CST305-SYSTEM SOFTWARE
UNIT I INTRODUCTION 8

System software and machine architecture — The Simplified Instructional Computer (SIC)
- Machine architecture - Data and instruction formats - addressing modes - instruction
sets - 1/0 and programming.

UNIT Il ASSEMBLERS 10
Basic assembler functions - A simple SIC assembler — Assembler algorithm and data
structures - Machine dependent assembler features - Instruction formats and addressing
modes — Program relocation - Machine independent assembler features - Literals —
Symbol-defining statements — Expressions - One pass assemblers and Multi pass
assemblers - Implementation example - MASM assembler.

UNIT 111 LOADERS AND LINKERS 9
Basic loader functions - Design of an Absolute Loader — A Simple Bootstrap Loader -
Machine dependent loader features - Relocation — Program Linking — Algorithm and
Data Structures for Linking Loader - Machine-independent loader features - Automatic
Library Search — Loader Options - Loader design options - Linkage Editors — Dynamic
Linking — Bootstrap Loaders - Implementation example - MSDOS linker.

UNIT IV MACRO PROCESSORS 9

Basic macro processor functions - Macro Definition and Expansion — Macro Processor
Algorithm and data structures - Machine-independent macro processor features -
Concatenation of Macro Parameters — Generation of Unique Labels — Conditional Macro
Expansion — Keyword Macro Parameters-Macro within Macro-Implementation example -
MASM Macro Processor — ANSI C Macro language.

UNIT V SYSTEM SOFTWARE TOOLS 9

Text editors - Overview of the Editing Process - User Interface — Editor Structure. -
Interactive debugging systems - Debugging functions and capabilities — Relationship with
other parts of the system — User-Interface Criteria.

TEXT BOOK 1. Leland L. Beck, “System Software — An Introduction to Systems
Programming”, 3rd Edition, Pearson Education Asia, 2006.

REFERENCES
1. D. M. Dhamdhere, “Systems Programming and Operating Systems”, Second
Revised Edition, Tata McGraw-Hill, 2000.
2. John J. Donovan “Systems Programming”, Tata McGraw-Hill Edition, 2000.

UNIT |

INTRODUCTION TO SYSTEM SOFTWARE AND
MACHINE STRUCTURE

SYSTEM SOFTWARE

System software consists of a variety of programs that support the operation of a
computer.

It is a set of programs to perform a variety of system functions as file editing,
resource management, I/0O management and storage management.

The characteristic in which system software differs from application software is
machine dependency.

An application program is primarily concerned with the solution of some
problem, using the computer as a tool.

System programs on the other hand are intended to support the operation and use
of the computer itself, rather than any particular application.

For this reason, they are usually related to the architecture of the machine on
which they are run.

For example, assemblers translate mnemonic instructions into machine code. The
instruction formats, addressing modes are of direct concern in assembler design.
There are some aspects of system software that do not directly depend upon the
type of computing system being supported. These are known as machine-
independent features.

For example, the general design and logic of an assembler is basically the same
on most computers.

TYPES OF SYSTEM SOFTWARE:

1. Operating system
2. Language translators

a. Compilers
b. Interpreters
c. Assemblers
d. Preprocessors

3. Loaders
4. Linkers
5. Macro processors

OPERATING SYSTEM

It is the most important system program that act as an interface between the users
and the system. It makes the computer easier to use.

2

e It provides an interface that is more user-friendly than the underlying hardware.
e The functions of OS are:

Process management

Memory management

Resource management

I/0O operations

Data management

Providing security to user’s job.

oukrwnE

LANGUAGE TRANSLATORS

It is the program that takes an input program in one language and produces an output in
another language.

Language
Source Program —» Translator > Object Program

Compilers

e A compiler is a language program that translates programs written in any high-
level language into its equivalent machine language program.
e |t bridges the semantic gap between a programming language domain and the
execution domain.
e Two aspects of compilation are:
o Generate code to increment meaning of a source program in the execution
domain.
o Provide diagnostics for violation of programming language, semantics in a
source program.
e The program instructions are taken as a whole.

Compiler

High level language —p» —Machine language program

Interpreters:

e |t is a translator program that translates a statement of high-level language to
machine language and executes it immediately. The program instructions are
taken line by line.

e The interpreter reads the source program and stores it in memory.

During interpretation, it takes a source statement, determines its meaning and
performs actions which increments it. This includes computational and 1/0
actions.
Program counter (PC) indicates which statement of the source program is to be
interpreted next. This statement would be subjected to the interpretation cycle.
The interpretation cycle consists of the following steps:

o Fetch the statement.

o Analyze the statement and determine its meaning.

o Execute the meaning of the statement.
The following are the characteristics of interpretation:

o The source program is retained in the source form itself, no target program

exists.
o A statement is analyzed during the interpretation.

Interpreter Memory
Source
Program | ¢—» program
counter
Assemblers:

Programmers found it difficult to write or red programs in machine language. In a
quest for a convenient language, they began to use a mnemonic (symbol) for each
machine instructions which would subsequently be translated into machine
language.

Such a mnemonic language is called Assembly language.

Programs known as Assemblers are written to automate the translation of
assembly language into machine language.

Assembler

Assembly language program —p» ——PpMachine language program

Fundamental functions:
1. Translating mnemonic operation codes to their machine language equivalents.
2. Assigning machine addresses to symbolic tables used by the programmers.

THE SIMPLIFIED INSTRUCTIONAL COMPUTER (SIC):

It is similar to a typical microcomputer. It comes in two versions:
e The standard model
e XE version

SIC Machine Structure:
Memory:

e |t consists of bytes(8 bits) ,words (24 bits which are consecutive 3 bytes)
addressed by the location of their lowest numbered byte.
e There are totally 32,768 bytes in memory.

Registers:

There are 5 registers namely

Accumulator (A)

Index Register(X)

Linkage Register(L)

Program Counter(PC)

Status Word(SW).

Accumulator is a special purpose register used for arithmetic operations.

Index register is used for addressing.

Linkage register stores the return address of the jump of subroutine instructions
(JSUB).

e Program counter contains the address of the current instructions being executed.
e Status word contains a variety of information including the condition code.

o e 0 rwNPE

Data formats:

e Integers are stored as 24-bit binary numbers: 2’s complement representation is
used for negative values characters are stored using their 8 bit ASCII codes.

e They do not support floating — point data items.
Instruction formats:

All machine instructions are of 24-bits wide
| Opcode (8) | X (1) | Address (15)

e X-flag bit that is used to indicate indexed-addressing mode.

Addressing modes:

Two types of addressing are available namely,
1. Direct addressing mode
2. Indexed addressing mode or indirect addressing mode

Mode | Indication | Target Address calculation
Direct | X=0 TA=Address

Indexe | X=1 TA=Address + (X)

d

Where(x) represents the contents of the index register(x)

Instruction set:

It includes instructions like:

1.

Data movement instruction
Ex: LDA, LDX, STA, STX.

Arithmetic operating instructions

Ex: ADD, SUB, MUL, DIB.

This involves register A and a word in memory, with the result being left in the
register.

Branching instructions
Ex: JLT, JEQ, TGT.

Subroutine linkage instructions
Ex: JSUB, RSUB.

Input and Output:

I/0 is performed by transferring one byte at a time to or from the rightmost 8 bits
of register A.
Each device is assigned a unique 8-bit code.
There are 3 1/0 instructions,
1) The Test Device (TD) instructions tests whether the addressed device is
ready to send or receive a byte of data.
2) A program must wait until the device is ready, and then execute a Read
Data (RD) or Write Data (WD).
3) The sequence must be repeated for each byte of data to be read or written.

SIC/XE ARCHITECTURE & SYSTEM SPECIFICATION

Memory:
e 1 word = 24 bits (3 8-bit bytes)
e Total (SIC/XE) = 220 (1,048,576) bytes (1Mbyte)

Registers:
e 10 x 24 bit registers

MNEMONIC Register Purpose

Accumulator

Index register

Linkage register (JSUB/RSUB)

Base register

General register

General register

Floating Point Accumulator (48 bits)
Program Counter (PC)

Status Word (includes Condition Code, CC)

0o X r»

O OO IWN O

w|-m
=0

Data Format:

e Integers are stored in 24 bit, 2's complement format
e Characters are stored in 8-bit ASCII format
e Floating point is stored in 48 bit signed-exponent-fraction format:

| s | exponent {11} | fraction {36} |

e The fraction is represented as a 36 bit number and has value between 0 and 1.

e The exponent is represented as a 11 bit unsigned binary number between 0 and
2047.

e The sign of the floating point number is indicated by s : O=positive, 1=negative.

e Therefore, the absolute floating point number value is: f*2(6-1024)

Instruction Format:
e There are 4 different instruction formats available:

Format 1 (1 byte):

| op {8}

Format 2 (2 bytes):

[op {8} [r1{4} [r2{4} |

Format 3 (3 bytes):

lop{6} [n]|i|x|b]p]e]displacement {12}

Format 4 (4 bytes):

[op {6}

[n[i|x|b]p]e][address {20}

Formats 3 & 4 introduce addressing mode flag bits:

Flag x:

n=0 & i=1

Immediate addressing - TA is used as an operand value (no memory reference)
n=1 & i=0

Indirect addressing - word at TA (in memory) is fetched & used as an address to
fetch the operand from

n=0 & i=0

Simple addressing TA is the location of the operand

n=1&i=1

Simple addressing same as n=0 & i=0

x=1 Indexed addressing add contents of X register to TA calculation

Flag b & p (Format 3 only):

Flag e:

b=0 & p=0

Direct addressing displacement/address field containsTA (Format 4 always uses
direct addressing)

b=0 & p=1

PC relative addressing - TA=(PC)+disp (-2048<=disp<=2047)*

b=1 & p=0

Base relative addressing - TA=(B)+disp (0<=disp<=4095)**

e=0 use Format 3
e=1 use Format 4

Instructions:
SIC provides 26 instructions, SIC/XE provides an additional 33 instructions (59 total)

SIC/XE has 9 categories of instructions:

e Load/store registers (LDA, LDX, LDCH, STA, STX, STCH, etc.)

e integer arithmetic operations (ADD, SUB, MUL, DIV) these will use register A
and a word in memory, results are placed into register A

e compare (COMP) compares contents of register A with a word in memory and
sets CC (Condition Code) to <, >, or =

e conditional jumps (JLT, JEQ, JGT) - jumps according to setting of CC

e subroutine linkage (JSUB, RSUB) - jumps into/returns from subroutine using
register L

e input & output control (RD, WD, TD) - see next section

e floating point arithmetic operations (ADDF, SUBF, MULF, DIVF)

e register manipulation, operands-from-registers, and register-to-register arithmetics
(RMO, RSUB, COMPR, SHIFTR, SHIFTL, ADDR, SUBR, MULR, DIVR, etc)

Input and Output (1/0):

e 28(256) I/0 devices may be attached, each has its own unique 8-bit address
e 1 byte of data will be transferred to/from the rightmost 8 bits of register A

Three 1/0O instructions are provided:
e RD Read Data from I/O device into A
e WD Write datato I/O device from A
e TD Test Device determines if addressed I/O device is ready to send/receive a byte
of data. The CC (Condition Code) gets set with results from this test:
< device is ready to send/receive
= device isn't ready

SIC/XE Has capability for programmed 1/0 (1/0 device may input/output data while CPU
does other work) - 3 additional instructions are provided:

. SIO Start I/0

. HIO Halt 1/0

. TIO Test I/0

SIC, SIC/XE ADDRESSING MODES

Addressing Flag Bits . Calculation of
Type i xbple Notation Target Address Operand Notes

Simple

Indirect

00

00

00

00

00

00

01

0 opc

1 +opm

0 opm

0 opm

0 opc,X

1 +opm,X

0 opmX

0 opm,X

- opm

- opm,X

0 op @c

1 +op @m

0 op@m

0 op @m

disp

addr

(PC) + disp

(B) + disp

disp + (X)

addr + (X)

(PC) + disp +
(X)

(B) +disp + (X)

b/p/e/disp

bipleldisp + (X)

disp

addr

(PC) + disp

(B) + disp

10

(TA)

(TA)

(TA)

(TA)

(TA)

(TA)

(TA)

(TA)

(TA)

(TA)

((TA)

((TA)

(TA)

((TA))

Direct-addressing
Instruction

Format 4 & Direct-
addressing Instruction

Assembler selects
either base-relative or
program-counter
relative mode

Assembler selects
either base-relative or
program-counter
relative mode

Direct-addressing
Instruction

Format 4 & Direct-
addressing Instruction

Assembler selects
either base-relative or
program-counter
relative mode

Assembler selects
either base-relative or
program-counter
relative mode

Direct-addressing
Instruction; SIC
compatible format.

Direct-addressing
Instruction; SIC
compatible format.

Direct-addressing
Instruction

Format 4 & Direct-
addressing Instruction

Assembler selects
either base-relative or
program-counter
relative mode

Assembler selects

Immediate

01000 0 op#c

010001 op#m

010010 op#m

01010 0 op#m

disp

addr

(PC) + disp

(B) + disp

11

TA

TA

TA

TA

either base-relative or
program-counter
relative mode

Direct-addressing
Instruction

Format 4 & Direct-
addressing Instruction

Assembler selects
either base-relative or
program-counter
relative mode

Assembler selects
either base-relative or
program-counter
relative mode

UNIT II

ASSEMBLERS

BASIC ASSEMBLER FUNCTIONS
Fundamental functions of an assembler:
e Translating mnemonic operation codes to their machine language equivalents.
e Assigning machine addresses to symbolic labels used by the programmer.

Figure 2.1: Assembler language program for basic SIC version

Line Source statement
| s COPY START 1000 COPY FILE FROM INPUT TG OUTPUT
10 FIRST STL RETADR SAVE RETURN ADDRESS
15 CLOOP JSUB RDREC READ INFUT RECORD
20 LOA LENGTH TEST FOR EOF (LENGTH = 0)
25 COMP ZERQ
of 20 JEQ ENDFIL EXIT IF EOF FOUND
ol 3 JSUB WRREC WRITE OUTPUT RECORD
Sl g cLooP LOOP
c| 45 ENDFIL LDA FOF INSERT END OF FILE MARKER
®| s0 STA BUFFER
2| 55 LDA THREE SET LENGTE = 3
60 STA LENGTH
&5 JSUB WRREC WRITE EOF
7 DL RETADR GET RETURN ADDRESS
75 RSB RETURN TO CALLER
80 EOF BYTE C EOF’
85 THREE WORD 3
90 7ERO WORD 0
95 RETADR RESW il
100 LENGTH RESW 1 LENGTH OF RECORD
105 BUFFER RESB 4096 4096-BYTE BUFFER AREA
~TT0 :
115 d SUBROUTINE 7O READ RECORD TNTOQ BUFFER
120

12

125 RDREC LDX ZERO CLEAR LOOP COUNTER
130 LDA ZERO CLEAR A TO ZERO

135 RLOOP TD INPUT TEST INPUT DEVICE

140 JEQ RLOOP LOOP UNTIL READY

145 RD INPUT READ CHARACTER INTO REGISTER A
150 COMP ZERO TEST FOR END OF RECORD (X’'00°)
155 JEQ EXIT EXIT LOOP IF EOR

160 STCH BUFFER, X STORE CHARACTER IN BUFFER

165 TIX MAXLEN LOOP UNLESS MAX LENGTH

170 JLT RLOOP HAS BEEN REACHED

175 EXIT STX LENGTH SAEVE RECORD LENGTH

180 RSUB RETURN TO CALLER

185 INPUT BYTE X PL? CODE FOR INPOT DEVICE |
190 MAXLEN WORD 4096

195 :

200 : SUBROUTINE TO WRITE RECORD FROM BUFFER

205 i

220 WRREC LDX ZERO CLEAR LOOP COUNTER

218 WLQOP TD QUTPUT TEST OUTPUT DEVICE

220 JEQ WLOOP LOOP UNTIL READY

225 LDCH BUFFER, X GET CHARACTER FROM BUFFER

230 WD QUTPUT WRITE CHARACTER

235 TIX LENGTH LOOP UNTIL ALL CHARACTERS

240 JLT WLOOP HAVE BEEN WRITTEN

245 RSUB RETURN TO CALLER

250 OUTPUT BYTE X'05’ CODE FOR OUTPUT DEVICE

255 END FIRST

Indexed addressing is indicated by adding the modifier “ X following the operand.

Lines beginning with “.”” contain comments only.

The following assembler directives are used:

START: Specify name and starting address for the program.

END : Indicate the end of the source program and specify the first executable
instruction in the program.

BYTE: Generate character or hexadecimal constant, occupying as many bytes as

needed to represent the constant.

WORD: Generate one- word integer constant.

RESB: Reserve the indicated number of bytes for a data area.

RESW: Reserve the indicated number of words for a data area.

The program contains a main routine that reads records from an input device(code F1)

and copies them to an output device(code 05).

The main routine calls subroutines:

RDREC — To read a record into a buffer.

e WRREC - To write the record from the buffer to the output device.

The end of each record is marked with a null character (hexadecimal 00).

A Simple SIC Assembler
The translation of source program to object code requires the following functions:

1. Convert mnemonic operation codes to their machine language equivalents. Eg:
Translate STL to 14 (line 10).

2. Convert symbolic operands to their equivalent machine addresses. Eg:Translate
RETADR to 1033 (line 10).

3. Build the machine instructions in the proper format.

4. Convert the data constants specified in the source program into their internal
machine representations. Eg: Translate EOF to 454F46(line 80).

5. Write the object program and the assembly listing.

All fuctions except function 2 can be established by sequential processing of source
program one line at a time.

Consider the statement
10 1000 FIRST STL RETADR 141033

This instruction contains a forward reference (i.e.) a reference to a label (RETADR) that
is defined later in the program. It is unable to process this line because the address that
will be assigned to RETADR is not known. Hence most assemblers make two passes
over the source program where the second pass does the actual translation.

The assembler must also process statements called assembler directives or pseudo
instructions which are not translated into machine instructions. Instead they provide
instructions to the assembler itself.

Examples: RESB and RESW instruct the assembler to reserve memory locations without
generating data values.

The assembler must write the generated object code onto some output device. This object
program will later be loaded into memory for execution.

Object program format contains three types of records:

e Header record: Contains the program name, starting address and length.
e Text record: Contains the machine code and data of the program.

e End record: Marks the end of the object program and specifies the address in the
program where execution is to begin.

14

Record format is as follows:

Header record:

Col. 1 H

Col.2-7 Program name

Col.8-13 Starting address of object program
Col.14-19 Length of object program in bytes

Text record:

Col.1 T

Col.2-7 Starting address for object code in this record

Col.8-9 Length of object code in this record in bytes

Col 10-69 Object code, represented in hexadecimal (2 columns per byte of object
code)

End record:

Col.1 E

Col.2-7 Address of first executable instruction in object program.
Header

BCCPY CUIDUUOUIUTA | Text

TUUL000LE] 610134620390010362810303010154620613C100300102A0C] 029001020
TOUL01E150C103646820610810334C0000454 F46000003006000
TOG20391E041030001030E0205030203ED8205D2810303020575490392C205E38203F
TEO020571C1010364CC0DOFLO0DIGO0D4103DECZOY Hﬁ!nl;':f:u&!}:w?u:a],‘IIJCZD?S:,‘:fClD}E-
T.Lﬂf]?n? %‘G'{,‘.'!P.?:Oélﬁpﬂ Cﬁﬂﬂﬁﬂﬂ‘i

i

Figure 2.3 Object program corresponding to Fig. 2.2,

Functions of the two passes of assembler:

Pass 1 (Define symbols)
1. Assign addresses to all statements in the program.
2. Save the addresses assigned to all labels for use in Pass 2.
3. Perform some processing of assembler directives.

Pass 2 (Assemble instructions and generate object programs)

15

Assemble instructions (translating operation codes and looking up addresses).
Generate data values defined by BYTE,WORD etc.

Perform processing of assembler directives not done in Pass 1.

Write the object program and the assembly listing.

o

Assembler Algorithm and Data Structures

Assembler uses two major internal data structures:
1. Operation Code Table (OPTAB) : Used to lookup mnemonic operation codes
and translate them into their machine language equivalents.
2. Symbol Table (SYMTAB) : Used to store values(Addresses) assigned to labels.

Location Counter (LOCCTR) :

e Variable used to help in the assignment of addresses.

e Itis initialized to the beginning address specified in the START statement.

e After each source statement is processed, the length of the assembled instruction
or data area is added to LOCCTR.

e Whenever a label is reached in the source program, the current value of LOCCTR
gives the address to be associated with that label.

Operation Code Table (OPTAB) :

e Contains the mnemonic operation and its machine language equivalent.

e Also contains information about instruction format and length.

e InPass 1, OPTAB is used to lookup and validate operation codes in the source
program.

e InPass 2, it is used to translate the operation codes to machine language program.

e During Pass 2, the information in OPTAB tells which instruction format to use in
assembling the instruction and any peculiarities of the object code instruction.

Symbol Table (SYMTAB) :

e Includes the name and value for each label in the source program and flags to
indicate error conditions.

e During Pass 1 of the assembler, labels are entered into SYMTAB as they are
encountered in the source program along with their assigned addresses.

e During Pass 2, symbols used as operands are looked up in SYMTAB to obtain the
addresses to be inserted in the assembled instructions.

Pass 1 usually writes an intermediate file that contains each source statement together

with its assigned address, error indicators. This file is used as the input to Pass 2. This
copy of the source program can also be used to retain the results of certain operations that

16

may be performed during Pass 1 such as scanning the operand field for symbols and
addressing flags, so these need not be performed again during Pass 2.

MACHINE DEPENDENT ASSEMBLER FEATURES

Consider the design and implementation of an assembler for SIC/XE version.

10
12
13
15
20
25
30
35
40
45
50
55
60
65
70
80
95
100
105
110

COPY START
FIRST STL
LDB
BASE
CLOQOP +JSUB
LDA
COMP
JEQ
+JSUB
J
ENDFIL LDA
STA
LDA
STA
+JSUB
J
EOF BYTE
RETADR RESW
LENGTH RESW
BUFFER RESB

0
RETADR
#LENGTH
LENGTH
RDREC
LENGTH
#0
ENDFIL
WRREC
CLOOP
EQF
BUFFER
#3
LENGTH
WRREC
@RETADR
C'EQF'
1
1
4096

17

COPY FILE FROM INPUT TO OUTPUT
SAVE RETURN ADDRESS
ESTABLISH BASE REGISTER

READ INPUT RECORD
TEST FOR EOF (LENGTH = 0)

EXIT IF EOF FOUND

WRITE OUTPUT RECORD

LOOP

INSERT END OF FILE MARKER

SET LENGTH = 3
WRITE EOF

RETURN TO CALLER

LENGTH OF RECORD
4096-BYTE BUFFER AREA

115 ' SUBROUTINE TO READ RECORD INTO BUFFER

125 RDREC CLEAR

X CLEAR LOOP COUNTER
130 CLEAR A CLEAR A TO ZERO
132 CLEAR S CLEAR S TO ZERO
133 +LDT #4096
135 RLOOP ™ INPUT TEST INPUT DEVICE
140 JEQ RLOOP LOOP UNTIL READY
145 RD INPUT READ CHARACTER INTO REGISTER A
150 COMPR A,S TEST FOR END OF RECORD (X'00')
155 JEQ EXIT EXIT LOOP IF EOR
160 STCH BUFFER, X STORE CHARACTER IN BUFFER
165 TIXR T LOOP UNLESS MAX LENGTH
170 JLT RLOOP HAS BEEN REACHED
175 EXIT STX LENGTH SAVE RECORD LENGTH
180 RSUB RETURN TO CALLER
185 INPUT BYTE X'F1' CODE FOR INPUT DEVICE
195

Indirect addressing is indicated by adding the prefix @ to the operand (line70).
Immediate operands are denoted with the prefix # (lines 25, 55,133). Instructions that
refer to memory are normally assembled using either the program counter relative or base
counter relative mode.

The assembler directive BASE (line 13) is used in conjunction with base relative
addressing. The four byte extended instruction format is specified with the prefix + added
to the operation code in the source statement.

Register-to-register instructions are used wherever possible. For example the statement
on line 150 is changed from COMP ZERO to COMPR A,S. Immediate and indirect
addressing have also been used as much as possible.

Register-to-register instructions are faster than the corresponding register-to-memory
operations because they are shorter and do not require another memory reference.

While using immediate addressing, the operand is already present as part of the
instruction and need not be fetched from anywhere. The use of indirect addressing often
avoids the need for another instruction.

18

Instruction Formats and Addressing Modes

e SIC/XE
o PC-relative or Base-relative addressing: opm
o Indirect addressing: op @m
o Immediate addressing: op #c
o Extended format: +op m
o Index addressing: op m,x
o register-to-register instructions
o larger memory -> multi-programming (program allocation)

Translation

e Register translation
o register name (A, X, L, B, S, T, F, PC, SW) and their values (0,1, 2, 3, 4,
5,6,8,9)
o preloaded in SYMTAB
e Address translation
o Most register-memory instructions use program counter relative or base
relative addressing
o Format 3: 12-bit address field
= base-relative: 0~4095
= pc-relative: -2048~2047
o Format 4: 20-bit address field

Program Relocation

The need for program relocation
e |tis desirable to load and run several programs at the same time.
e The system must be able to load programs into memory wherever there is room.
e The exact starting address of the program is not known until load time.

Absolute Program
e Program with starting address specified at assembly time
e The address may be invalid if the program is loaded into somewhere else.
e Example:

19

55 101B LDA THREE 00102D

‘ Calculate based on the starting address 1000 |

Reload the program starting at 3000

55 101B LDA THREE 00302D

‘ The absolute address should be modified ‘

Example: Program Relocation

0000
0006 |4B101036 | (+JSUB RDREC)
1036| B410 <+— RDREC

1076

5000
5006 |4B106036 | (+JSUB RDREC)

6026 | B410 *+—— RDREC

7420
6076

7426 | 4B108456 | (+JSUB RDREC)
456" | B410 le— RDREC

8496

e The only parts of the program that require modification at load time are those that
specify direct addresses.
e The rest of the instructions need not be modified.
o Not a memory address (immediate addressing)
o PC-relative, Base-relative
e From the object program, it is not possible to distinguish the address and constant.
o The assembler must keep some information to tell the loader.
o The object program that contains the modification record is called a
relocatable program.

The way to solve the relocation problem
e For an address label, its address is assigned relative to the start of the
program(START 0)
e Produce a Modification record to store the starting location and the length of the
address
e field to be modified.

20

e The command for the loader must also be a part of the object program.

Modification record

e One modification record for each address to be modified

e The length is stored in half-bytes (4 bits)

e The starting location is the location of the byte containing the leftmost bits of the
address field to be modified.

e If the field contains an odd number of half-bytes, the starting location begins in
the middle of the first byte.

Modification record
Col. 1 M
Col. 2-7 Starting location of the address field to be modified,
relative to the beginning of the program (Hex)
Col. 8-9 Length of the address field to be modified, in half-bytes (Hex)

Relocatable Object Program

HCOPY ULUU(mU(»l)77 5 half- ‘J,toq
1uLu<,nnnl,2(zoegzuzDAsﬁglu3%njzuzh7gnranwzrozgaLo1(5@3F)+}Lu3701¢
TUUnuxnlaup4«160100030}°OODA31910>D35’ou3a54+4b
TUQIHJleBAlOBuHUB//l7;lOlCOULJ’019332FbADBZUl3\00633200857@00338)0
TULIUJBLDJBLFPNI340004?0000F1341077&UUUE320l1332FPA53(Ob3bb°0L8BbSO

um/oo/mLFL}Mwmm
I((J(.‘b(l7' 35—~

MO000 14(v5

Mpuooiiua

E000000

MACHINE INDEPENDENT ASSEMBLER FEATURES

Literals

e The programmer writes the value of a constant operand as a part of the instruction
that uses it. This avoids having to define the constant elsewhere in the program
and make a label for it.

e Such an operand is called a Literal because the value is literally in the instruction.

21

e Consider the following example

LDA FIVE

FIVE WORD 5

N LDA =X0%

e Itis convenient to write the value of a constant operand as a part of instruction.

e A literal is identified with the prefix =, followed by a specification of the literal

value.
e Example:
45 0012 ENDFIL LDA =C’EOF’ 022010
nixbpe disp
000000 110010 010
93 LTORG
0020 * =C' EOF’ 454F46
215 1062 WLOOP TD =X’'05' E3Z0LT]
230 106B WD =X'05" DFZ008]
1076%« =X’'05"’ 05
Literals vs. Immediate Operands
e Literals
The assembler generates the specified value as a constant at some other memory
location.
45 001A ENDFIL LDA =C’EOF’ 022010]
e Immediate Operands
55 0020 LDA #3 010003

22

The operand value is assembled as part of the machine instruction
e We can have literals in SIC, but immediate operand is only valid in SIC/XE.
Literal Pools

e Normally literals are placed into a pool at the end of the program
e Insome cases, it is desirable to place literals into a pool at some other location in
the object program
e Assembler directive LTORG
o When the assembler encounters a LTORG statement, it generates a literal
pool (containing all literal operands used since previous LTORG)
e Reason: keep the literal operand close to the instruction
o Otherwise PC-relative addressing may not be allowed

Duplicate literals

e The same literal used more than once in the program
o Only one copy of the specified value needs to be stored
o For example, =X"05’
e Inorder to recognize the duplicate literals
o Compare the character strings defining them
= Easier to implement, but has potential problem
= e.0.=X0%
o Compare the generated data value
= Better, but will increase the complexity of the
= assembler
= e.g.=C’EOF’ and =X"454F46’

Problem of duplicate-literal recognition

e “*’ denotes a literal refer to the current value of program counter
o BUFEND EQU *
e There may be some literals that have the same name, but different values
o BASE*
o LDB =* (#LENGTH)
e The literal =* repeatedly used in the program has the same name, but different
values
e The literal “=*” represents an “address” in the program, so the assembler must
generate the appropriate “Modification records”.

Literal table - LITTAB

23

e Content

o Literal name
o Operand value and length

o Address
e LITTAB is often organized as a hash table, using the literal name or value as the

key.

Implementation of Literals

Pass 1

e Build LITTAB with literal name, operand value and length, leaving the address

unassigned

e When LTORG or END statement is encountered, assign an address to each literal
not yet assigned an address
o updated to reflect the number of bytes occupied by each literal

Pass 2

e Search LITTAB for each literal operand encountered
e Generate data values using BYTE or WORD statements

e Generate Modification record for literals that represent an address in the program

SYMTAB & LITTAB

SYMTAB Name WValue

COPY

FIERST o
CLOOP &
ENDFIL 12
EETADER 30
LENGTH 33
EUFFER 3G
EUFEND 103a
MAXLEN 1000
EDEEC 1036
RLOOP 1040
EXIT 1054
INEUT 105
WREC 105D
WLOOP 1082

Symbol-Defining Statements

Literal Hex Length | Address
Values

CrEOF 454F46 3 Q00zD

X' 057 05 1 1076

24

e Most assemblers provide an assembler directive that allows the programmer to
define symbols and specify their values.

Assembler directive used is EQU.

e Syntax: symbol EQU value
e Used to improve the program readability, avoid using magic numbers, make it
easier to find and change constant values
e Replace +LDT #4096 with
MAXLEN EQU 4096
+LDT #MAXLEN
e Define mnemonic names for registers.
A EQU 0 RMO A X
X EQU 1
e Expression is allowed
MAXLEN EQU BUFEND-BUFFER

Assembler directive ORG
e Allow the assembler to reset the PC to values
o Syntax: ORG value
e When ORG is encountered, the assembler resets its LOCCTR to the specified
value.
e ORG will affect the values of all labels defined until the next ORG.

e |If the previous value of LOCCTR can be automatically remembered, we can
return to the normal use of LOCCTR by simply writing
o ORG

Example: using ORG

e |f ORG statements are used

STAR EESE 1100

ORG ~ STAB g 5ot LOCCTR to STAB
SYMEQOL REESE &
VALUE RESW 1 _ _
PLAGS PESE |2 A Sizo of each field

ORG STAE+1100 == Hestore LOCCTR

e We can fetch the VALUE field by
LDA VALUE,X
X =0, 11, 22, ... for each entry

Forward-Reference Problem

25

e Forward reference is not allowed for either EQU or ORG.
e All terms in the value field must have been defined previously in the program.
e The reason is that all symbols must have been defined during Pass 1 in a two-pass

assembler.
e Allowed:
ALPHA RESW 1
BETA EQU ALPHA
e Not Allowed:
BETA EQU ALPHA
ALPHA RESW 1

Expressions

e The assemblers allow “the use of expressions as operand”
e The assembler evaluates the expressions and produces a single operand address or
value.
e Expressions consist of
Operator
o +,-,*/(division is usually defined to produce an integer result)
Individual terms
o Constants
o User-defined symbols
o Special terms, e.g., *, the current value of LOCCTR

e Examples
MAXLEN EQU BUFEND-BUFFER
STAB RESB (6+3+2)*MAXENTRIES

Relocation Problem in Expressions
e Values of terms can be
o Absolute (independent of program location)
= constants
o Relative (to the beginning of the program)
= Address labels
= *(value of LOCCTR)
e Expressions can be

o Absolute
o Only absolute terms.
o MAXLEN EQU 1000
o Relative terms in pairs with opposite signs for each pair.
MAXLEN EQU BUFEND-BUFFER
o Relative

26

All the relative terms except one can be paired as described in “absolute”.
The remaining unpaired relative term must have a positive sign.

STAB EQU OPTAB + (BUFEND — BUFFER)
Restriction of Relative Expressions

e No relative terms may enter into a multiplication or division operation
o 3*BUFFER
e Expressions that do not meet the conditions of either “absolute” or “relative”
should be flagged as errors.
o BUFEND + BUFFER
o 100 - BUFFER

Handling Relative Symbols in SYMTAB
e To determine the type of an expression, we must keep track of the types of all

symbols defined in the program.
e We need a “flag” in the SYMTAB for indication.

Symboal Type Value
RETADR R 0030 » Absolute value
BUFFER R 0036 BUFEND - BUFFER
BUFEND R 1036 . I||ega|
MAXLEN A 1000 BUFEND + EBEUFFER
100 - BUFFER
3 * BUFFER

Program Blocks

e Allow the generated machine instructions and data to appear in the object
program in a different order
e Separating blocks for storing code, data, stack, and larger data block
e Program blocks versus. Control sections
o Program blocks
= Segments of code that are rearranged within a single object
program unit.
o Control sections
= Segments of code that are translated into independent object
program units.

e Assembler rearranges these segments to gather together the pieces of each block
and assign address.
e Separate the program into blocks in a particular order

27

e Large buffer area is moved to the end of the object program
e Program readability is better if data areas are placed in the source program close
to the statements that reference them.

Assembler directive: USE

e USE [blockname]

e At the beginning, statements are assumed to be part of the unnamed (default)
block

e If no USE statements are included, the entire program belongs to this single block
e Each program block may actually contain several separate segments of the source

program
Example

(default) block - Block number
{nooo! 0* COPY START 0
0ooo 0 FIRST STL RETADR 172063
0003 0 CLOOP JSUB RDREC 482021
0006 0 LOA LENGTH 032060
0oo0s 0 COMP #0 290000
0ooc 0 JEQ ENDFIL 332008
0o0oF 0 JSUB WRREC 482038
no12 0 J CLOOP 3IF2FEE
0015 0 EMDFIL LOA =C'EOF 032055
o018 D STA BUFFER 0F2056
0o01B 0 LOA #3 010003
0o01E] STA LENGTH 0F2048
0oz1] JSUB WRREC 482029
0024 0 J @RETADR 3E203F
{0000 | 1 USE CDATA 4 CDATA block

goo 1 RETADR RESW 1
D003 1 LENGTH RESW 1
10000 2 USE CBLKS <« CBLKS block
0ooo 2 BUFFER RESE 4040

1000 2 BUFEMND EQU *

1000 MAXLEM EQU BUFEND-BUFFER

28

= 2 DoDOoDoOoDoDooDooDo oo oD

= DD oo oo oo oo

RDREC

RLOOF

EXIT

INFUT

WRREC

WLOOP

Three blocks are used

LDCH

TIXR
JLT
RsUB

LTORG
=C’EOF
=x08

END

e default: executable instructions.
e CDATA: all data areas that are less in length.
e CBLKS: all data areas that consists of larger blocks of memory.

(default) block

x B410
A B400
8 B440
#MAXLEN 75101000
INPUT E32028
RLOOP A3ZFFA
INPUT DBE2032
AS ADD4
EXIT 332008
BUFFER,X B7ADZF
T Bas0
RLOOP 3B2FEA
LENGTH 13201F
4F0000
CDATA = CDATA block
KET F1
(default) block
X B410
LENGTH 772017
=X05 E3201B
WLOOP A32FFA
BUFFER, X H3AD16
=X05 DF2012
T Ba50
WLOOP AB2FEF
4F0000
CDATA <——CDATA block
ARAF 46
05
FIRST

CDATA

CBLKS

29

Rearrange Codes into Program Blocks

Pass 1
e A separate location counter for each program block
o Save and restore LOCCTR when switching between blocks
o At the beginning of a block, LOCCTR is set to 0.
e Assign each label an address relative to the start of the block
e Store the block name or number in the SYMTAB along with the assigned relative
address of the label
e Indicate the block length as the latest value of LOCCTR for each block at the end
of Passl
e Assign to each block a starting address in the object program by concatenating the
program blocks in a particular order

Block name Block number Address Length

(default) 0 0ooo 0066
CDATA 1 0oes 0ooB
CBLKS 2 0071 1000

Pass 2

e Calculate the address for each symbol relative to the start of the object program
by adding
o The location of the symbol relative to the start of its block
o The starting address of this block

Program Blocks Loaded in Memory

Program loaded g.jasive

Line Source program Object program in memory address
5 | Default(1) Default(1) Default(1) 0000
el
(" 0027
Default(2) Default(2)
o 4 >
25| CDATA(1)

Not present / lcoata@) " Default(3) 0040

Default(3)

In object program | 1os CBLKS(1)

b 0088

125 | Default(2) \. |CDATA(1)
‘ 008C

CDATA(3) . JCDATAQ)
- A CDATAQ3) 006D
185 |CDATA(2) CBLKS(1) oer

270 | Defauli(3)

252 |CDATA(3)

1070
an

30

Object Program

It is not necessary to physically rearrange the generated code in the object
program

The assembler just simply inserts the proper load address in each Text record.
The loader will load these codes into correct place

HCOPY 000000001071
T0000001E1720634B20210320602900003320064B203B3F 2FEEQ320550F 2056010003
T00001EQ90F 20484B20293E203F

T0000271DB410B400B44075101000E32038332FF ADB2032A00433200857A02F B850
T000044093B2FEA] 3201F4F0000

T00006CO1F1

T00004D19B41077201TE3201B332FFAS3A016DF 2012B850382FEF 4F0000
T00006DD4454F 4605

E000000

Control Sections and Program Linking

Control sections

can be loaded and relocated independently of the other

are most often used for subroutines or other logical subdivisions of a program

the programmer can assemble, load, and manipulate each of these control sections
separately

because of this, there should be some means for linking control sections together
assembler directive: CSECT

sechame CSECT

separate location counter for each control section

External Definition and Reference

Instructions in one control section may need to refer to instructions or data located
in another section
External definition
o EXTDEF name [, name]
o EXTDEF names symbols that are defined in this control section and may
be used by other sections
o Ex: EXTDEF BUFFER, BUFEND, LENGTH
External reference
o EXTREF name [,name]
o EXTREF names symbols that are used in this control section and are
defined elsewhere
o Ex: EXTREF RDREC, WRREC
To reference an external symbol, extended format instruction is needed.

31

-Implicitly defined as an external symbol
e - first control section
COPY START4 0 COPY FILE FROM INPUT TO QUTPUT

[_EXTDEF __ BUFFER,BUFEND,LENGTH _|
[EXTREF RDREC,WRREC |

FIRST STL RETADR SAVE RETURN ADDRESS
CLOOP [#5ue RODREC READ INPUT RECORD
LDA LENGTH TEST FOR EOF {LENGTH=0)
COMP #0
JEQ EMNDFIL EXIT IF EOF FOUND
EIJSUB WRREC WRITE QUTPUT RECORD
] CLOOP LOOP
EMDFIL LDA =C'EOF INSERT END OF FILE MARKER
5TA BUFFER
LDA #3 SET LENGTH = 3
STA LENGTH
SUB WRREC WRITE EOF
] @RETADR RETURN TO CALLER
RETADR RESW 1
LEMNGTH RESW 1 LEMNGTH OF RECORD
LTORG
BUFFER RESB 4096 4096-BYTE EUFFER AREA
BUFEND EQU *
MAXLEN EQU BUFFEND-BUFFER
mplicitly defined as an external symbol
- CSECT L second control section
SUBROUTINE TO READ RECORD INTO BUFFER
[EXTREF _ BUFFER,LENGTH,BUFFEND |
CLEAR X CLEAR LOOP COUNTER
CLEAR A CLEAR &4 TO ZERQ
CLEAR S CLEAR S TO ZERO
LOT MAXLEN
RLOOP TD INPUT TEST INPUT DEVICE
JEQ RLOQP LOOP UNTIL READY
RD INPUT READ CHARACTER INTO REGISTER A
COMBR AS TEST FOR END OF RECORD (X'00°)
JEQ EXIT EXIT LOOP IF EOR
+STCH _BUFFERX STORE CHARACTER TN BUFFER
TIXR T LOOP UNLESS MAX LENGTH HAS
T RLOOP BEEN REACHED
EXIT +5TX LENGTH SAVE RECORD LENGTH
RSUB RETURN TO CALLER
INPUT BYTE XFL' CODE FOR INPUT DEVICE
MAXLEN WORD BUFFEND-BUFFER

32

mplicitly defined as an external symbol
. __— third control section
WRREC CSECT a—

SUBROUTIME TO WRITE RECORD FROM BUFFER

{EXTREF LENGTH,BUFFER

CLEAR X CLEAR LOOP COUNTER

+LOT LENGTH

WLOOP D =X05" TEST OUTPUT DEVICE

JEQ WLOOP LOOP UNTIL READY

+LOCH BUFFER, X GET CHARACTER FROM BUFFER
WD =X05" WRITE CHARACTER
TIXR T LOOP UNTIL ALL CHARACTERS HAVE
T WLOOP BEEN WRITTEN
RSUB RETURN TO CALLER
END FIRST

External Reference Handling

Case 1
o 15 0003 CLOOP +JSUB RDREC 4B100000
e The operand RDREC is an external reference.
e The assembler
o Has no idea where RDREC is
o Inserts an address of zero
o Can only use extended format to provide enough room (that is, relative
addressing for external reference is invalid)
e The assembler generates information for each external reference that will allow
the loader to perform the required linking.

Case 2

e 190 0028 MAXLEN WORD BUFEND-BUFFER
000000
e There are two external references in the expression, BUFEND and BUFFER.
e The assembler
o inserts a value of zero
o passes information to the loader
= Add to this data area the address of BUFEND
= Subtract from this data area the address of BUFFER

Case 3
e On line 107, BUFEND and BUFFER are defined in the same control section and
the expression can be calculated immediately.

e 107 1000 MAXLEN EQU BUFEND-BUFFER

33

Records for Object Program

The assembler must include information in the object program that will cause the
loader to insert proper values where they are required.

Define record (EXTDEF)

Col. 1 D
Col. 2-7 Name of external symbol defined in this control section
Col. 8-13 Relative address within this control section (hexadeccimal)

Col.14-73 Repeat information in Col. 2-13 for other external symbols

Refer record (EXTREF)

Col. 1 R
Col. 2-7 Name of external symbol referred to in this control section
Col. 8-73 Name of other external reference symbols

Modification record

Col.1M

Col. 2-7 Starting address of the field to be modified (hexiadecimal)

Col. 8-9 Length of the field to be modified, in half-bytes (hexadeccimal)
Col.11-16 External symbol whose value is to be added to or subtracted from the
indicated field

Control section name is automatically an external symbol, i.e. it is available for
use in Modification records.

Object Program

COPY

HCOPY 000000001033

DBUFFERDO0033BUFENDO01033L ENGTHQ0002D |

RRDREC WRREC

10000001 D] 720274B1000000320232900003320074B1000003F 2FEC0320160F2016
T00001DODO100030F200A4B1000003E2000
T00003003454F 46

MO0000405+RDREC
MO00011(5:+WRREC
MO0002405+WRREC

EO0DO00

34

RDREC

HRDREC 000000000028

RBUFFERLENGTHBUFEND

70000001 DB410B400B44077201FE3201B332FFADB2015A004,33200957900000B8850
T00001DOE3B2FEY 1 31000004F0000F 1.000000

M00001805+BUFFER
M00002105+LENGTH
MOOD02806+BUFEND -
"pms’oﬁ_MFFER - BUFEND - BUFFER

E

WRREC

HNRREC 00000000001C

'RLENGTHBUFFER |

10000001 CB41077100000E3201232FFA53900000DF 2008B8503B2FEE4F 000005
MOOO00305+LENGTH
MOODOODDS5+BUFFER
E

Expressions in Multiple Control Sections

e Extended restriction
o Both terms in each pair of an expression must be within the same control
section
o Legal: BUFEND-BUFFER
o lllegal: RDREC-COPY
e How to enforce this restriction
o When an expression involves external references, the assembler cannot
determine whether or not the expression is legal.
o The assembler evaluates all of the terms it can, combines these to form an
initial expression value, and generates Modification records.
o The loader checks the expression for errors and finishes the evaluation.

ASSEMBLER DESIGN
The assembler design deals with
e Two-pass assembler with overlay structure

e One-pass assemblers
e Multi-pass assemblers

One-pass assembler

Load-and-Go Assembler

35

e Load-and-go assembler generates their object code in memory for immediate
execution.

No object program is written out, no loader is needed.

It is useful in a system with frequent program development and testing

The efficiency of the assembly process is an important consideration.

Programs are re-assembled nearly every time they are run; efficiency of the
assembly process is an important consideration.

One-Pass Assemblers

e Scenario for one-pass assemblers
o Generate their object code in memory for immediate execution — load-
and-go assembler
o External storage for the intermediate file between two passes is slow or is
inconvenient to use
e Main problem - Forward references
o Data items
o Labels on instructions
e Solution
o Require that all areas be defined before they are referenced.
o Itis possible, although inconvenient, to do so for data items.
o Forward jump to instruction items cannot be easily eliminated.
= Insert (label, address_to_be modified) to SYMTAB
= Usually, address_to_be_modified is stored in a linked-list

Sample program for a one-pass assembler

36

Line Loc Source statement Object code

Forward Reference in One-pass Assembler

e Omits the operand address if the symbol has not yet been defined.
e Enters this undefined symbol into SYMTAB and indicates that it is undefined.

e Adds the address of this operand address to a list of forward references associated
with the SYMTAB entry.

e When the definition for the symbol is encountered, scans the reference list and
inserts the address.

e At the end of the program, reports the error if there are still SYMTAB entries
indicated undefined symbols.

e For Load-and-Go assembler
o Search SYMTAB for the symbol named in the END statement and jumps
to this location to begin execution if there is no error.

Object Code in Memory and SYMTAB

37

After scanning line 40 of the above program

Memory
address Contents Symbol Value
1000 454F4600 00030000 OOXXXXXX XXXXXXXX LENGTH | 100C
1010 AXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX RDREC *l.__,rgmglol
& bk —P|
. . ___—|THREE (1003
2000 XXXXXXXEK —XXXXKXXX 3(_x-x>xxxxx Xxxxxx1l4 ZERO 1006
2010 100944% —Jool00c 28100630 [—das= e I [P ‘—’@wlﬂ
2020 [FJ3c2012 e
. [EOF___ |1000
* =1 e 3
. ENDFIL | = o-i»[zmc[ﬂ
RETADR | 1009
BUFFER | 100F
CLOOP |2012
FIRST 200F
After scanning line 160 of the above program
Memory - - 'Symbol Value
address Contents LENGTH | 100C
1000 454F4600 00030000 OO0XXXXXX XXXXXXXX RDREC | 203D
1010 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX i
. [THREE |1003
’ bl ZERO [1006
2000 XXXXXXAX XFXXRXXK XXXXKXXXX xxxxxx1d
2010 10094820 3B00100C 28100630 202444—|«— | VRBEC- *]" ,’LZOJF-I;—!- *’{*2"34;]
2020 3€2012 0010000C 100F0010 036308 — | EoF | 1000
2030 T0094C00 00F10010 00041006 ~f—
2040 00ID06E0 20393020 43082039 28100630 ENDFIL__| 2024
2050 3490 OF .
g RETADR | 1009
5 BUFFER | 100F
CLOOP | 2012
FIRST | 200F
| MAXLEN | 203A
INPUT | 2039..
exr__ [o] o—s{20s0]o]
ALOOP | 2043

If One-Pass Assemblers need to produce object codes

38

e If the operand contains an undefined symbol, use O as the address and write the
Text record to the object program.

e Forward references are entered into lists as in the load-and-go assembler.

e When the definition of a symbol is encountered, the assembler generates another
Text record with the correct operand address of each entry in the reference list.

e When loaded, the incorrect address O will be updated by the latter Text record
containing the symbol definition.

Object code generated by one-pass assembler

HCOPY 001000001074
T00100009454F46000003000000
OOZOOFAISAM1009,\&897(3&),\001OOCA281006A30Q7(2@A480000A302012

[T00201C022024 |
T002024190010000C100E0010030€100C4800000810094C0000F1001000
ii;pozolal,pzf\zoaol

4
T00203D1EQ41006001006E0203930204308203928100630000054900F2C2034382043
1002050022058
T00205807,1010064€000005
T00201F022062
1002031022062

4C0000

T00206218041006E0206130206550900EDC20612C10063820654C00

EAOOZOOF

o

M

Two-pass assembler with overlay structure

e Most assemblers divide the processing of the source program into two passes.

e The internal tables and subroutines that are used only during Pass 1 are no longer
needed after the first pass is completed.

e The routines and tables for Pass 1 and Pass 2 are never required at the same time.

e There are certain tables (SYMTAB) and certain processing subroutines (searching
SYMTAB) that are used by both passes.

e Since Pass 1 and Pass 2 segments are never needed at the same time, they can
occupy the same locations in memory during execution of the assembler.

e Initially the Root and Pass 1 segments are loaded into memory.

e The assembler then makes the first pass over the program being assembled.

e At the end of the Passl, the Pass 2 segment is loaded, replacing the Pass 1
segment.

e The assembler then makes its second pass of the source program and terminates.

39

e The assembler needs much less memory to run in this way than it would be if both
Pass 1 and Pass 2 were loaded at the same time.

e A program that is designed to execute in this way is called an Overlay program
because some of its segments overlay others during execution.

Shared table :
q Driver
& Routines Shared table
Pass 1 table ‘ & RoTtines
& Routines | |
Pass 2 table Pass 1 table Pass 2 table
. & Routines & Routines
& Routines

Multi-Pass Assemblers

e For a two pass assembler, forward references in symbol definition are not

allowed:
ALPHA EQU BETA
BETA EQU DELTA
DELTA RESW 1

e The symbol BETA cannot be assigned a value when it is encountered during Pass
1 because DELTA has not yet been defined.

e Hence ALPHA cannot be evaluated during Pass 2.

e Symbol definition must be completed in pass 1.

e Prohibiting forward references in symbol definition is not a serious
inconvenience.

e Forward references tend to create difficulty for a person reading the program.

e The general solution for forward references is a multi-pass assembler that can
make as many passes as are needed to process the definitions of symbols.

e |t is not necessary for such an assembler to make more than 2 passes over the
entire program.

e The portions of the program that involve forward references in symbol definition
are saved during Pass 1.

e Additional passes through these stored definitions are made as the assembly
progresses.

e This process is followed by a normal Pass 2.

40

Implementation

e For aforward reference in symbol definition, we store in the SYMTAB:
o The symbol name
o The defining expression
o The number of undefined symbols in the defining expression
e The undefined symbol (marked with a flag *) associated with a list of symbols
depend on this undefined symbol.
e When a symbol is defined, we can recursively evaluate the symbol expressions
depending on the newly defined symbol.

Example of Multi-pass assembler

v >
HALFSZ |&1| MAXLEN/2 0
Depending list
S 4 £~
MAXLEN | *].._ﬁ HALFSZ lp
+ L

Consider the symbol table entries from Pass 1 processing of the statement.
HALFS2 EQU MAXLEN/2

e Since MAXLEN has not yet been defined, no value for HALFS2 can be
computed.

e The defining expression for HALFS2 is stored in the symbol table in place of its
value.

e The entry &1 indicates that 1 symbol in the defining expression undefined.

e SYMTAB simply contain a pointer to the defining expression.

41

The symbol MAXLEN is also entered in the symbol table, with the flag *
identifying it as undefined.

Associated with this entry is a list of the symbols whose values depend on
MAXLEN.

42

UNIT Il

LOADERS AND LINKERS

INTRODUCTION

e Loader is a system program that performs the loading function.

e Many loaders also support relocation and linking.

e Some systems have a linker (linkage editor) to perform the linking operations and
a separate loader to handle relocation and loading.

e One system loader or linker can be used regardless of the original source
programming language.

e Loading o Brings the object program into memory for execution.

e Relocation @ Modifies the object program so that it can be loaded at an address
different from the location originally specified.

e Linking o Combines two or more separate object programs and supplies the
information needed to allow references between them.

BASIC LOADER FUNCTIONS

Fundamental functions of a loader:
1. Bringing an object program into memory.
2. Starting its execution.

Design of an Absolute Loader

For a simple absolute loader, all functions are accomplished in a single pass as follows:

1) The Header record of object programs is checked to verify that the correct program has
been presented for loading.

2) As each Text record is read, the object code it contains is moved to the indicated
address in memory.

3) When the End record is encountered, the loader jumps to the specified address to begin
execution of the loaded program.

43

An example object program is shown in Fig (a).

BEOPY 01000001074
1001000181 410334820340010362810393010158820613¢10030010249C103900102D
TO0101K} 500103648206 10810334C00004 54F48000003000000
100203518041030001030802050302037,08205028103630205754903926205338203F
1002053161 010364000007 100100004 103E020793020645090330C20792C1036
10020730738206440000005

£001000
(s) Object program

Fig (b) shows a representation of the program from Fig (a) after loading.

Memory
address Contents

0000 xXXIXXXXL AXAXXAXX AXXEXXXX XXAXXXXX
gclo EXARXAAXT ARALXARY AXAXXXXEX XAXAXXEZXX

- » L] L L

. » - = @

. L]] - -
orro ERARX R XXX REXAK

1000 14103348 20390010 36281030 3QICI54B
1010 20813Ci0. Q3001024 OC103900 102DOC10
1020 36482081 O0O810334C QO00454F 46000003
1030 [000000xx xxxxxxxx xxxxxxxx azxxxzxax[*—COPY

- v » - >
- - » » -
- - L 2 -

2030 XXXaxxMx xxxxxxxx xx0&1030 O001030E0Q
2040 20503020 3FDE203D 23103030 20875490
2050 392C203E 3I8203FI0 10354C00 OQOFPLOD10
2060 00043030 EC2075310 208435090 39DC207%

2070 |2C103638 20644C00 000Shexxx wxxxmxxx

2080 XEXAXAAE KAXANAXAX RXEXAXXX RAXXIEXX

L - . . .
. -] - »
" - * &

(b) Program losded In memory

44

Algorithm for Absolute Loader

begin
read Header record
verify progran name and length
read first Text record
while record type # 'E’' do
begin
{if object code is in character form, convert inte
internal representation}
move cbject code to specified location in memory
read next okject program record
and
jump to address spscified in End record
end

e |t is very important to realize that in Fig (a), each printed character represents one
byte of the object program record.

e In Fig (b), on the other hand, each printed character represents one hexadecimal
digit in memory (a half-byte).

e Therefore, to save space and execution time of loaders, most machines store
object programs in a binary form, with each byte of object code stored as a single
byte in the object program.

e In this type of representation a byte may contain any binary value.

A Simple Bootstrap Loader

When a computer is first turned on or restarted, a special type of absolute loader, called a
bootstrap loader, is executed. This bootstrap loads the first program to be run by the
computer — usually an operating system.

Working of a simple Bootstrap loader

e The bootstrap begins at address 0 in the memory of the machine.

e |t loads the operating system at address 80.

e Each byte of object code to be loaded is represented on device F1 as two
hexadecimal digits just as it is in a Text record of a SIC object program.

45

e The object code from device F1 is always loaded into consecutive bytes of
memory, starting at address 80. The main loop of the bootstrap keeps the address
of the next memory location to be loaded in register X.

e After all of the object code from device F1 has been loaded, the bootstrap jumps
to address 80, which begins the execution of the program that was loaded.

e Much of the work of the bootstrap loader is performed by the subroutine GETC.

e GETC is used to read and convert a pair of characters from device F1 representing
1 byte of object code to be loaded. For example, two bytes = C “D8”0 ‘4438°H
converting to one byte ‘D8’H.

e The resulting byte is stored at the address currently in register X, using STCH
instruction that refers to location 0 using indexed addressing.

e The TIXR instruction is then used to add 1 to the value in X.

Source code for bootstrap loader

BOOT START 0 BOCTSTRAP LOADER FOR SIC/XE

. THIS BOOTSTRAP READS OBJECT CODE FROM DEVICE F1 AND ENTERS IT
. INTO MEMORY STARTING AT ADDRESS B0 (EEXADECIMAL). AFTER ALL OF
. THE CODE FROM DEVF. HAS BEEN SEEN ENTERED INTO MEMORY, THE

. BOOTSTRA? EXECUTES A JIRMP TC ADDRESS 80 TO EBEGIN EXECUTION OF
. THE PROGRAM JUST LOADED, REGISTER X CONTAINS THE NEXT ADCRESS

. TO BE LOADED.
CLEAR - CLEAR. REGISTER A TC ZERO
LDX 128 INITIALIZE REGISTER X TO EEX BC

LOCP Jeua GETC READ HEX DIGIT FRCOM PRCGRAM BEING LOADED
RO A.S WVE IN REGISTER S
SHIFTL 5.4 MOVE TO HIGH-ORDER 4 BITS OF BYTE
JSUB GETC GET NEXT HEX DIGIT
ADDE S,A COMBINE DIGITS TO FORM ONE BYTE
STCH 0.X STORE AT ADDRESS IN REGISTER X
TIXR X, X ADD 1 TO MEMCRY ACDRESS BEING LCADED
J LCOP LOOP UNTIL END OF INPUT IS REACHED

. SUBROUTINE TO READ ONE CHARACTER FROM INPUT DEVICE AND

. CONVERT IT FROM ASCII CODE TO HEXADECIMAL DIGIT VALUE. THE
. CONVERTED DIGIT VALUE IS RETURNED IN REGISTER A. WHEN AN

. END-CF-FILE IS READ, CONTROL IS TRANSFERRED TO THE STARTING
. ADDRESS (HEX 80).

46

GETC ™ INPUT TEST INFUT DEVICE

JEQ GETC LOO? UNTIL READY
RD INFUT READ CHARACTER
coMP #d IF CHARACTER IS HEX 04 (END OF FILE),
JEQ 80 JUMP TO START CF PROGRAM JUST LOAZED
coMP 448 COMPARE TO HEX 30 (CHARACTER ‘0’|
JUT GETC SXIP? CHARACTERS LESS THAN ‘0
SUB hig SUBTRACT HEX 30 FROM ASCII CODE
QOMP #10 IF RESULT IS LESS THAN 10, CONVERSION IS
JuT RETURN COMPLETE. OTHERWISE, SUBTRACT 7 MORE
sUB L (FOR HZX DIGITS ‘A’ THROUGH 'F’)
RETURN RSUB RETURN TO CALLER
NPoT BYTE X'F1 CODE FOR INFUT DEVICE
END LOCP

MACHINE-DEPENDENT LOADER FEATURES

The absolute loader has several potential disadvantages. One of the most obvious
is the need for the programmer to specify the actual address at which it will be
loaded into memory.

On a simple computer with a small memory the actual address at which the
program will be loaded can be specified easily.

On a larger and more advanced machine, we often like to run several independent
programs together, sharing memory between them. We do not know in advance
where a program will be loaded. Hence we write relocatable programs instead of
absolute ones.

Writing absolute programs also makes it difficult to use subroutine libraries
efficiently. This could not be done effectively if all of the subroutines had pre-
assigned absolute addresses.

The need for program relocation is an indirect consequence of the change to
larger and more powerful computers. The way relocation is implemented in a
loader is also dependent upon machine characteristics.

Loaders that allow for program relocation are called relocating loaders or relative
loaders.

Relocation

Two methods for specifying relocation as part of the object program:

The first method:

A Modification is used to describe each part of the object code that must be
changed when the program is relocated.

47

Fig(1) :Consider the program

Line Loc Source statement Object code
5 Q000 COPY START 0

10 0000 FIRST STL RETADR 17202D
12 0003 LDB #LENGTH 69202D
13 BASE LENGTH
15 00Dé CLOOP +JSUB RDREC 4B101036
20 000 LDA LENGTH 032C26
25 co0D ooMe #0 290000
30 0010 JEQ ENDFIL 332007
35 ao13 +JSUB WRREC 4B10105D
ap 0017 J CLOCP 3F2FEC
a5 001a ENDFIL LDA ECOP 032010
50 001D STA BUFFER 0Fz2016
55 0020 LDA #3 010003
&0 0023 STA LENGTH OF200D
(2= 0026 ~JSUB WRREC 4B10105D
70 DO2ZA J @RETADR 3E2003
20 002D BEOF BYTE C’EQF"* 454F46
a5 0630 RETADR RESW 1

100 0033 LENGTH RESW 1

105 0036 BUFFER RESB 4096

110 >

115 . SUBROUTINE TC READ RECORD INTO BUFFER

120 P

125 1036 ROREC CLEAR X B410

130 1038 CLEAR A B400

132 103A CLERR B8 B440

133 103C +LDT #4096 75101000

135 1040 RILOOP ™ INPUT E32019

140 1043 JEQ RLOOP 332FFA

145 1046 RD INPUT DB2013

150 1049 COMFR A,S AQ004

155 104B JEQ EaT 332008
150 104E STCH BUFFER, X 57C003

165 1051 TIXR T B850

17¢ 1053 JLT RID0P 3B2FEA

175 1056 EXIT STX LENGTH 134000
180 1059 RSUB 4F0000
185 105C INPUT BYTE X'Fl’ Fl

18€ .

2CC . SUBROUTINE TO WRITE RECCRD FROM BUFFER

2Cs .

210 105D WRREC CLEAR X B41C

212 105F ior LENGTH 774000

215 1062 WLOOP D QUTPUT E32011

220 1065 JEQ WLOOP 332FFA
225 1068 LDCH BUFFER, X 53C003

230 106B WD OUTPUT DF2008B
235 106E TIXR T BE50

240 1070 JAT WLOCP 3B2FEF
245 1073 RSUB 4F0000
250 107¢ OUTPUT BYTE X'05¢ 05

255 END FIRST

48

e Most of the instructions in this program use relative or immediate addressing.

e The only portions of the assembled program that contain actual addresses are the
extended format instructions on lines 15, 35, and 65. Thus these are the only items
whose values are affected by relocation.

Object program

HCOPY 900000001077

1000000} 017202069202043101036032026290000332007431010503F2FEG0I2010
100001D)30F20160100030720004B1010503E2003454F46
T001036,1084103400B44075101000E32019332FFADB201JA00433200837C0033850
10010531 0382FEA) 340004 FO000F L84 10774000E32011,3327FAS3ICO0IDF20088850
700107007I82FEFAF000005

KD00007,05+COPY

HPOOOIl“DSﬂOPl

HO0002705+COPY

E000000

e Each Modification record specifies the starting address and length of the field
whose value is to be altered.

e |t then describes the modification to be performed.

e In this example, all modifications add the value of the symbol COPY, which
represents the starting address of the program.

Fig(2) :Consider a Relocatable program for a Standard SIC machine

Line Lac Source statement Object cocle
5 0000 COPY START O

12 9000 FIRST STL RETADR 140033
15 0003 CLCOP JSUR RDREC 481039
20 0006 LDA LENGTH 000036
2 0009 CoMp ZERO 280030
ao 0ooc JEQ ENDFIL 300015
35 000F JsuB WRREC 481061
40 0012 J CLOo0P 300003
45 o015 ENDFIL LDA 20F 000022
56 0cls STA BUEFER 0C0038
55 ol LDA THREE 000620
&0 001E STA LENGTH DCDO36
85 go21 JSUB WRREC 481061

49

200

210
215
229

230
235
240
245
220
255

SUBROUTINE TO WRITE RECORD FRCM BUFFER

1061 WRREC Lo ZERQ 0406630

1064 WLOCP ™ OUTHUT ED1079
1067 JEQ WLOOF 301064
1062 LOCH BUFFER, X 508039
106D v OUTPUT DC107¢
1070 TIX LENGTH 2C0036
1073 JLT LOoP 381064
1076 R3UB 4C0000
1079 OUTPUT HYTE x'05° 05
BN FIRST

The Modification record is not well suited for use with all machine
architectures.Consider, for example, the program in Fig (2) .This is a relocatable
program written for standard version for SIC.

The important difference between this example and the one in Fig (1) is that the
standard SIC machine does not use relative addressing.

In this program the addresses in all the instructions except RSUB must modified
when the program is relocated. This would require 31 Modification records,
which results in an object program more than twice as large as the one in Fig (1).

The second method:

There are no Modification records.

The Text records are the same as before except that there is a relocation bit
associated with each word of object code.

Since all SIC instructions occupy one word, this means that there is one relocation
bit for each possible instruction.

Fig (3): Object program with relocation by bit mask

50

HEOPY PO000GPOI0TA

TO00000 1 EF¥CIA00334810390000362800303000154810613C000300002ADC003500002D
TO00D1EISE000C0036481061,0800334C0000454F46000003000000

3001039137 ¥C040030000030E0105D30103ED81050280030301037,5480392C105E38103%F
10010570A800,1000364C000QF 1001000

TAOOIOO Ll mosoosg‘:mm g\aonosgsou:g\nclongcoo:gguou; €000005
E000000

e The relocation bits are gathered together into a bit mask following the length
indicator in each Text record. In Fig (3) this mask is represented (in character
form) as three hexadecimal digits.

e If the relocation bit corresponding to a word of object code is set to 1, the
program’s starting address is to be added to this word when the program is
relocated. A bit value of O indicates that no modification is necessary.

e |If a Text record contains fewer than 12 words of object code, the bits
corresponding to unused words are set to 0.

e For example, the bit mask FFC (representing the bit string 111111111100) in the
first Text record specifies that all 10 words of object code are to be modified
during relocation.

e Example: Note that the LDX instruction on line 210 (Fig (2)) begins a new Text
record. If it were placed in the preceding Text record, it would not be properly
aligned to correspond to a relocation bit because of the 1-byte data value
generated from line 185.

Program Linking

Consider the three (separately assembled) programs in the figure, each of which consists
of a single control section.

Program 1 (PROGA):

51

0000

0020
goz23
o027

0040

0054
D054
0057
00SA
005D
0060

3

START 0

ENDA-LISTA+LISTC
ENDC-LISTC-10
ENDC-LISTC+LISTA-1
ENDA-LISTA~ (ENDB~-LISTS)
LISTB-LISTA

Program 2 (PROGB):

0036
DO3A
003D

0080

0070
0070
0073
0076
0079
Qe7C

+LDA LISTA

Lor LI

~LDX #ENDA-LISTA

n‘ ? -

iOU »

WORD ENDA-LISTA+LISTC
WORD ENDC-LISTC-10
WORD ENDC-LISTC+LISTA-1
WORD ENDA-LISTA- (ENDB~LISTSB)
WORD LISTB-LISTA

2D

Program 3 (PROGC):

52

03201D
77100004
050014

000014
FFFFF6
CODO3F

cOooC14
FFF=CO

Object code

03100000
772027
05100000

000000
FFTFF6
FFEXFFY
FFFFFO
ao00s0

Lo<

2000

Q013
Qo1cC
2o

0230

0042
0042
D04cs
0048
DO4B
DO4E
Y

REF3

LISTC

REF4

REFS

REFS

Source statement

START

o

EXTDEF LISTC,ENDC
EXTREF LISTA.END&,LISTE.ENDR

+LDA
+LDT
+LIXX

WORD
WORD
WORD

AT

LISTA
LISTB-4
#ENDA-LISTA

-
ENDA-LISTA+LISTC
ENDC—LISTC-10
ENDC-LISTCH+LISTA-L
ENDA-LISTA- (ENOBE-LISTB)
LISTB~LISTA

Consider first the reference marked REF1.

For the first program (PROGA),
REF1 is simply a reference to a label within the program.

It is assembled in the usual way as a PC relative instruction.
No modification for relocation or linking is necessary.

In PROGB, the same operand refers to an external symbol.

For PROGC, REF1 is handled in exactly the same way.

Object code

03100000
77100004
C5100000

ogeo30
ogcoes
00001l
coocdo
000000

The assembler uses an extended-format instruction with address field set to

00000.

The object program for PROGB contains a Modification record instructing the
loader to add the value of the symbol LISTA to this address field when the

program is linked.

Corresponding object programs

PROGA:

53

ISTA PODCLCENDA 000054

ROGA PODOOCOO0063
RLISTS ENDB _LISTC .ENDC
-

10000200403201 077 100004050014
-

0002 LIST
DOO54064L ISTC
0005 JUE+ENDC
000SJ0g-LISTC
DOOSADG+ENDC
0003AP&-LISTC
DOOSADE+PROGA
0005 ENDB

ooos;g noou.:prrrrgpoooa;oooo:wrrrco
0

HODUCS +LISTD

MbDOoGH LIST3

0006006-PROGA
t00U02
PROGB:

ROGCEH oo DOOOTF
ISTS 00 N D s ooorFo
ISTA WDA AA-EXASTC NoDC

TOOOOSAOROIL0C0007 7202705100000
-
-

THOOO 7O ROOOOOQFFFFFEFFPFPPEFFFFFQO00060
CO03IFOX+LISTA

PROGC:

54

ROCC o000 ODaOO0OS)
ISTC 00O0O3ICENDC Lo0os2
ISTA ENDA ALSTE ENDB

-
-
TOOOODLAEOCO3I 1000007 710000405 100000
-
-

100006 OOOO3quOOquOOOIRPOOOOQDOOOOD
OOO] *Llﬁ'

©0o0o2 OLISID

ooo2 OKHDA

ooo2 ~LISTA

Qo0oa O OINDA

BEEebeRes

OOOQ ‘Ller
CoOOoa OP-OGC
DOO& FLISTA
OOO& LrENDA

DOO4& s.,-r.zn-rA

MO OOOLABOE-—ENDE

MOOUVO4ABOG+LISTS
onos +SLISTS
COO&AEOGE-~LISTA

e The reference marked REF2 is processed in a similar manner.

e REF3 is an immediate operand whose value is to be the difference between
ENDA and LISTA (that is, the length of the list in bytes).

e In PROGA, the assembler has all of the information necessary to compute this
value. During the assembly of PROGB (and PROGC), the values of the labels are
unknown.

e In these programs, the expression must be assembled as an external reference
(with two Modification records) even though the final result will be an absolute
value independent of the locations at which the programs are loaded.

e Consider REF4.

e The assembler for PROGA can evaluate all of the expression in REF4 except for
the value of LISTC. This results in an initial value of ‘000014’H and one
Modification record.

e The same expression in PROGB contains no terms that can be evaluated by the
assembler. The object code therefore contains an initial value of 000000 and three
Modification records.

e For PROGC, the assembler can supply the value of LISTC relative to the
beginning of the program (but not the actual address, which is not known until the
program is loaded).

e The initial value of this data word contains the relative address of LISTC
(‘000030°H). Modification records instruct the loader to add the beginning
address of the program (i.e., the value of PROGC), to add the value of ENDA,
and to subtract the value of LISTA.

Fig (4): The three programs as they might appear in memory after loading and
linking.

55

address Contents
ocoo AXXXXXXX EXXXXXXX AXXXXXXX AXXXXEXX
- - - = -
- - - - -
- - - - -
3Fr0 xx x x
Q000 Jeceesceere oostececs osssscses ovsessss
BO10 |esecoece essesecss sssmssss sssesssss
4020 |03201P77 1040C705 001&.... <.vesnwns L« PROGA
Q030 Jevescoces sssesese ssssssss essssese
Q080 Jevesecoes ovosccse ssesee s esesssss
4050 Jecoveces 00412600 000B0040 51000004
4060 OOOO0BY.. cevecces sesmsnes sesssses
8070 Jccecscece ecscccss oseacesses essseses
sope. |orooir S Taia i 10332037
K090 Jicesecce ossecccss ««0310 B
AGER - [EABOREN. i, mhevss R s oo e—PROGB
A0BO0 Jiceecceces sscscses osscscesite scssssse
Q0CO Jecrecece osscccces osasscses seces ces
40D0 Jeeiosa 00 41260000 08004051 C©CCDOO&OO
40ED ODBF.c.v cevecnns oavessss osossssss
AO0PD Jecvescce ossscscss ««+-0310 &O0D407710
4100 40C70510 O001&...c ccccoess ossesese +—PROGC
4110 teccssse secsssse sesmsesse sasssese
4120 Jececcess
4130 | AXXAXXXXE XXXAXXXX
4140 AXXXXXNX AXXAXLXAKX AXXXXXXX XXXXRXXRXX
- - - - -
- - - - -
- - - - -

PROGA has been loaded starting at address 4000, with PROGB and PROGC

immediately following.

For example, the value for reference REF4 in PROGA is located at address 4054 (the

beginning address of PROGA plus 0054).

Fig (5): Relocation and linking operations performed on REF4 in PROGA

56

Object programs Memory contents

PROGA | HPROGA se+ 0000
. (REF4) b
S T e 1 trere
: l Il'..l.l.@....‘..l.l..

(Actual address
of LISTC)

The initial value (from the Text record) is 000014. To this is added the address assigned
to LISTC, which 4112 (the beginning address of PROGC plus 30).

Algorithm and Data Structures for a Linking Loader

e The algorithm for a linking loader is considerably more complicated than the
absolute loader algorithm.

e A linking loader usually makes two passes over its input, just as an assembler
does. In terms of general function, the two passes of a linking loader are quite
similar to the two passes of an assembler:

e Pass 1 assigns addresses to all external symbols.
e Pass 2 performs the actual loading, relocation, and linking.

e The main data structure needed for our linking loader is an external symbol table
ESTAB.

(1) This table, which is analogous to SYMTAB in our assembler algorithm, is

used to store the name and address of each external symbol in the set of
control sections being loaded.

57

(2) A hashed organization is typically used for this table.

e Two other important variables are PROGADDR (program load address) and
CSADDR (control section address).

(1) PROGADDR is the beginning address in memory where the linked program
is to be loaded. Its value is supplied to the loader by the OS.

(2) CSADDR contains the starting address assigned to the control section
currently being scanned by the loader. This value is added to all relative
addresses within the control section to convert them to actual addresses.

PASS 1

e During Pass 1, the loader is concerned only with Header and Define record types
in the control sections.

Algorithm for Pass 1 of a Linking loader

Pass I:

begin
get PROGADDR from cperating system
set CSADDR to PROGADDR {for first contrel section)
while not end of irnput do
begin
read next input record (Header record for control section}
set CSLTH to control section length
scarch ESTAB for control sectlorn name
if found then
set error flag (duplicate external symbol}
else
enter control section name into ESTAB with value CSADDR
while recerd tvpe = ‘E‘ do
begin
read next input record
if record type = 'D’ then
for each symbol in the record deo
begin
seaxch ESTAEB for symbol nane
if found then
set error flag (duplicate exterral zywbol)
else
enter symbcl into ESTAB withk value
(CSADDR + indicated addresa)
end {for}
end [vhile = T}
add CSLTH to CSADDR {starting adéress for next conktrol section)
end {while not EOF)
end {Poss 1}

1) The beginning load address for the linked program (PROGADDR) is obtained from
the OS. This becomes the starting address (CSADDR) for the first control section in the

input sequence.
2) The control section name from Header record is entered into ESTAB, with value given

by CSADDR. All external symbols appearing in the Define record for the control

58

section are also entered into ESTAB. Their addresses are obtained by adding the value
specified in the Define record to CSADDR.

3) When the End record is read, the control section length CSLTH (which was saved
from the End record) is added to CSADDR. This calculation gives the starting address for
the next control section in sequence.

e At the end of Pass 1, ESTAB contains all external symbols defined in the set of
control sections together with the address assigned to each.

e Many loaders include as an option the ability to print a load map that shows these
symbols and their addresses.

PASS 2

e Pass 2 performs the actual loading, relocation, and linking of the program.

Algorithm for Pass 2 of a Linking loader

1) As each Text record is read, the object code is moved to the specified address (plus the
current value of CSADDR).

2) When a Modification record is encountered, the symbol whose value is to be used for
modification is looked up in ESTAB.

3) This value is then added to or subtracted from the indicated location in memory.

4) The last step performed by the loader is usually the transferring of control to the
loaded program to begin execution.

e The End record for each control section may contain the address of the first
instruction in that control section to be executed. Our loader takes this as the
transfer point to begin execution. If more than one control section specifies a
transfer address, the loader arbitrarily uses the last one encountered.

e If no control section contains a transfer address, the loader uses the beginning of
the linked program (i.e., PROGADDR) as the transfer point.

e Normally, a transfer address would be placed in the End record for a main
program, but not for a subroutine.

59

Pass 2:

begin
set CSADDR to PROGADDR
set EXECATDR to PROGADOR
while not end of input do
begin
read next input record (Header record)
set CSLTH to control secticn length
while record type # 'E’ do
begin
read next input record
if record type = 'T’ then
begin
{if object code is in character form, convert
into internal representation}
move object code from record to locationm
(CEADDR + epecified addregs)
end {if ‘T'}
else if record type = ‘M’ them
begin
search ESTAB for modifying symbcl name
if found then
acdd or subtract symbol value ar location
(CSADDR + specified address|
alse
set error flag (undefined external symbol)
end (if 'M'}
end {while # 'E’}
if an address is specified (in End record} then
set EXECADDR to (CSADDR + specified address)
add CSLTH to CSADDR
end (while not EOF)

jump to location given by EXECADDR {to start executicn of loaded programy
end (Pass 2}

This algorithm can be made more efficient. Assign a reference number, which is used
(instead of the symbol name) in Modification records, to each external symbol referred to

in a control section. Suppose we always assign the reference number 01 to the control
section name.

Fig (6): Object programs using reference numbers for code modification

60

ROCA DO000QGOO006ES
ISTA °°£38"‘ 00054
RO2LISTS DIENDE QALISTC QSENDC

;pODOW.wSIDIV? 100004050014

e ogox.qpnnqpooonpoooLqprnco

IST® o006

RD2LISTA O3E

TO000360803100000772027051C0000
-

cooro

ROCR2 o000 QQOo7¥
NDB
A DALISTC LOSENDC

0Qo7 FO000OO0C FFFFOFFFFFEFFFFFOO00Q60
ooo:%ﬁ‘}oz " « » :

0C03 +03

rE

ROGC DDO00QOO0CS1
1STC DOODO3IGENDC 00042
2LISTA 23. A eb IsSTS es:nn-

TO000180CO31000007710C004051000C0
-

000420EH0003000000800001 1LOOCO0CLOC000
noongpi}%* * & 0 :
CO01BOSH
+03

0002,05~-02
0004206403
0004206-02
0004206+01
rteri ol
co o
0004 oﬁ
ocoOoa

~02

206-TF

ggooOt D&

oDos D&

MY oooa%igw
E

61

MACHINE-INDEPENDENT LOADER FEATURES

Loading and linking are often thought of as OS service functions. Therefore, most
loaders include fewer different features than are found in a typical assembler.
They include the use of an automatic library search process for handling external
reference and some common options that can be selected at the time of loading
and linking.

Automatic Library Search

Many linking loaders can automatically incorporate routines from a subprogram
library into the program being loaded.

Linking loaders that support automatic library search must keep track of external
symbols that are referred to, but not defined, in the primary input to the loader.

At the end of Pass 1, the symbols in ESTAB that remain undefined represent
unresolved external references.

The loader searches the library or libraries specified for routines that contain the
definitions of these symbols, and processes the subroutines found by this search
exactly as if they had been part of the primary input stream.

The subroutines fetched from a library in this way may themselves contain
external references. It is therefore necessary to repeat the library search process
until all references are resolved.

If unresolved external references remain after the library search is completed,
these must be treated as errors.

Loader Options

Many loaders allow the user to specify options that modify the standard
processing

Typical loader option 1: Allows the selection of alternative sources of input.
Ex : INCLUDE program-name (library-name) might direct the loader to read the

designated object program from a library and treat it as if it were part of the
primary loader input.

Loader option 2: Allows the user to delete external symbols or entire control
sections.

Ex : DELETE csect-name might instruct the loader to delete the named control
section(s) from the set of programs being loaded.

CHANGE namel, name2 might cause the external symbol namel to be changed
to name2 wherever it appears in the object programs.

62

Loader option 3: Involves the automatic inclusion of library routines to satisfy
external references.

Ex. : LIBRARY MYLIB
Such user-specified libraries are normally searched before the standard system
libraries. This allows the user to use special versions of the standard routines.

NOCALL STDDEV, PLOT, CORREL

To instruct the loader that these external references are to remain unresolved. This
avoids the overhead of loading and linking the unneeded routines, and saves the
memory space that would otherwise be required.

LOADER DESIGN OPTIONS

Linking loaders perform all linking and relocation at load time.
There are two alternatives:

1. Linkage editors, which perform linking prior to load time.
2. Dynamic linking, in which the linking function is performed at execution

time.

Precondition: The source program is first assembled or compiled, producing an
object program.
A linking loader performs all linking and relocation operations, including
automatic library search if specified, and loads the linked program directly into
memory for execution.
A linkage editor produces a linked version of the program (load module or
executable image), which is written to a file or library for later execution.

Linkage Editors

The linkage editor performs relocation of all control sections relative to the start
of the linked program. Thus, all items that need to be modified at load time have
values that are relative to the start of the linked program.

This means that the loading can be accomplished in one pass with no external
symbol table required.

If a program is to be executed many times without being reassembled, the use of a
linkage editor substantially reduces the overhead required.

Linkage editors can perform many useful functions besides simply preparing an
object program for execution. EX., a typical sequence of linkage editor commands
used:

INCLUDE PLANNER (PROGLIB)

63

DELETE PROJECT {delete from existing PLANNER}
INCLUDE PROJECT (NEWLIB) {include new version}
REPLACE PLANNER (PROGLIB)

e Linkage editors can also be used to build packages of subroutines or other control
sections that are generally used together. This can be useful when dealing with
subroutine libraries that support high-level programming languages.

e Linkage editors often include a variety of other options and commands like those
discussed for linking loaders. Compared to linking loaders, linkage editors in
general tend to offer more flexibility and control.

Fig (7): Processing of an object program using (a) Linking loader and (b) Linkage
editor

Memory Linked
program

(a)

Relocating
loader

'

Memory

(o)

Dynamic Linking

64

e Linkage editors perform linking operations before the program is loaded for
execution.

e Linking loaders perform these same operations at load time.

e Dynamic linking, dynamic loading, or load on call postpones the linking function
until execution time: a subroutine is loaded and linked to the rest of the program
when it is first called.

e Dynamic linking is often used to allow several executing programs to share one
copy of a subroutine or library, ex. run-time support routines for a high-level
language like C.

e With a program that allows its user to interactively call any of the subroutines of a
large mathematical and statistical library, all of the library subroutines could
potentially be needed, but only a few will actually be used in any one execution.

e Dynamic linking can avoid the necessity of loading the entire library for each
execution except those necessary subroutines.

Dynamic
loader
(part of the
operating
system)

Load-and-call
ERRHANDL

User
program

(a)

65

Load-and-call

ERRHANDL
User User
program program -
ERRHANDL ERRHANDL

(c) (d}

Fig (a): Instead of executing a JSUB instruction referring to an external symbol, the
program makes a load-and-call service request to OS. The parameter of this request is the
symbolic name of the routine to be called.

Fig (b): OS examines its internal tables to determine whether or not the routine is already
loaded. If necessary, the routine is loaded from the specified user or system libraries.

Fig (c): Control is then passed from OS to the routine being called

Fig (d): When the called subroutine completes it processing, it returns to its caller (i.e.,
0S). OS then returns control to the program that issued the request.

Fig (e): If a subroutine is still in memory, a second call to it may not require another load
operation. Control may simply be passed from the dynamic loader to the called routine.

66

Bootstrap Loaders

e With the machine empty and idle there is no need for program relocation.
e We can specify the absolute address for whatever program is first loaded and this
will be the OS, which occupies a predefined location in memory.
e We need some means of accomplishing the functions of an absolute loader.
1. To have the operator enter into memory the object code for an absolute loader,
using switches on the computer console.
2. To have the absolute loader program permanently resident in a ROM.
3. To have a built —in hardware function that reads a fixed —length record from
some device into memory at a fixed location.

e When some hardware signal occurs, the machine begins to execute this ROM
program.

e On some computers, the program is executed directly in the ROM: on others, the
program is copied from ROM to main memory and executed there.

e The particular device to be used can often be selected via console switches.

e After the read operation is complete, control is automatically transferred to the
address in memory where the record was stored, which contains machine where
the record was stored, which contains machine instructions that load the absolute
program that follow.

e If the loading process requires more instructions that can be read in a single
record, this first record causes the reading of others, and these in turn can cause
the reading of still more records — boots trap.

e The first record is generally referred to as bootstrap loader:

e Such a loader is added to the beginning of all object programs that are to be
loaded into an empty and idle system.

e This includes the OS itself and all stand-alone programs that are to be run without
an OS.

67

UNIT IV

MACROPROCESSORS

INTRODUCTION

Macro Instructions

« A macro instruction (macro)
— It is simply a notational convenience for the programmer to write a
shorthand version of a program.
— It represents a commonly used group of statements in the source program.
— It is replaced by the macro processor with the corresponding group of
source language statements. This operation is called “expanding the
macro”
» For example:
— Suppose it is necessary to save the contents of all registers before calling a
subroutine.
— This requires a sequence of instructions.
— We can define and use a macro, SAVEREGS, to represent this sequence
of instructions.

Macro Processor

* A macro processor
— Its functions essentially involve the substitution of one group of characters
or lines for another.
— Normally, it performs no analysis of the text it handles.
— It doesn’t concern the meaning of the involved statements during macro
expansion.
» Therefore, the design of a macro processor generally is machine independent.
« Macro processors are used in
— assembly language
— high-level programming languages, e.g., C or C++
— OS command languages
— general purpose

Format of macro definition

A macro can be defined as follows

MACRO - MACRO pseudo-op shows start of macro definition.
Name [List of Parameters] - Macro name with a list of formal parameters.

68

....... - Sequence of assembly language instructions.

<
m
Z
O

MEND (MACRO-END) Pseudo shows the end of macro definition.

Example:

MACRO
SUM XY
LDA X
MOV BX,X
LDAY
ADD BX
MEND

BASIC MACROPROCESSOR FUNCTIONS

The fundamental functions common to all macro processors are:
1. Macro Definition
2. Macro Invocation
3. Macro Expansion

Macro Definition and Expansion

e Two new assembler directives are used in macro definition:

o MACRO: identify the beginning of a macro definition
o MEND: identify the end of a macro definition
e Prototype for the macro:
o Each parameter begins with ‘&’
label op operands
name MACRO parameters

body

MEND
e Body: The statements that will be generated as the expansion of the macro.

69

5 COPY START 0 COPY FILE FROM INPUT TO QUTPUT
10 RDBUFF ~ MACRO &INDEV, &BUFADR, &RECLTH

il
20 g MACRO TO READ RECORD INTO BUFFER

2

30 CLEAR X CLEAR LOOP COUNTER

35 CLEAR A

4 CLEAR §

45 +LDT #4096 SET MAXIMUM RECORD LENGTH
50 T =X'GNDEV' TEST INPUT DEVICE

55 JEQ a3 LOOP UNTIL READY

60 RD =X' &INDEV' READ CHARACTER INTO REG A
65 COMPR A,S TEST FOR END OF RECORD

70 JEQ *411 EXIT LOOP IF EOR

fi) STCH &BUFADR, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT =19 HAS BEEN REACHED

90 STX &RECLTH SAVE RECORD LENGTH

95 MEND
100 WRBUFF MACRO §OUTDEV, GBUFADR, &RECLIH

105 .

o R MACRO T0 WRITE RECORD FROM BUFFER

s

120 CLER X CLEAR LOOP COUNTER

125 DT &RECLTH

130 LDCH &BUFADR,X GET CHARACTER FROM BUFFER
135 ™ =X'GUTDEV’ TEST QUTPUT DEVICE

140) *3 LOOP UNTIL READY

145 WD =X'WQUTDEV' WRITE CHARACTER

150 TR 1T LOOP UNTIL ALL CHARACTERS
155 qar 1 HAVE BEEN VRITTEN

160 MEND

165

70

It shows an example of a SIC/XE program using macro Instructions.

This program defines and uses two macro instructions, RDBUFF and WRDUFF .
The functions and logic of RDBUFF macro are similar to those of the RDBUFF
subroutine.

The WRBUFF macro is similar to WRREC subroutine.

Two Assembler directives (MACRO and MEND) are used in macro definitions.
The first MACRO statement identifies the beginning of macro definition.

The Symbol in the label field (RDBUFF) is the name of macro, and entries in the
operand field identify the parameters of macro instruction.

In our macro language, each parameter begins with character &, which facilitates
the substitution of parameters during macro expansion.

The macro name and parameters define the pattern or prototype for the macro
instruction used by the programmer. The macro instruction definition has been
deleted since they have been no longer needed after macros are expanded.

Each macro invocation statement has been expanded into the statements that form
the body of the macro, with the arguments from macro invocation substituted for
the parameters in macro prototype.

The arguments and parameters are associated with one another according to their
positions.

Macro Invocation

A macro invocation statement (a macro call) gives the name of the macro
instruction being invoked and the arguments in expanding the macro.
The processes of macro invocation and subroutine call are quite different.
o Statements of the macro body are expanded each time the macro is
invoked.
o Statements of the subroutine appear only one; regardless of how many
times the subroutine is called.
The macro invocation statements treated as comments and the statements
generated from macro expansion will be assembled as though they had been
written by the programmer.

71

170 : MAIN PROGRAM
75
180 FIRST STL RETADR SAVE RETURN ADDRESS
190 CLOOP RDBUFF F1,BUFFER,LENGTH READ RECORD INTO BUFFER
195 LDA LENGTH TEST FOR END OF FILE
200 COMP #0
205 JEQ ENDFIL EXIT IF EOF FOUND
210 WRBUFF 05,BUFFER,LENGTH WRITE OUTPUT RECORD
215 J CLOOP LOOP
220 ENDFIL ~ WRBUFF 05,EOF, THREE INSERT EOF MARKER
225 J @RETADR
230 EOF BYTE C'EQF’
235 HREE WORD 3
240 RETADR RESW 1
245 LENGTH RESW 1 LENGTH OF REC
250 BUFFER ~ RESB 4096 4096-BYTE
255 END FIRST

Macro Expansion

e Each macro invocation statement will be expanded into the statements that form
the body of the macro.
e Arguments from the macro invocation are substituted for the parameters in the

macro prototype.
o The arguments and parameters are associated with one another according

to their positions.
= The first argument in the macro invocation corresponds to the first
parameter in the macro prototype, etc.
e Comment lines within the macro body have been deleted, but comments on
individual statements have been retained.
e Macro invocation statement itself has been included as a comment line.

Example of a macro expansion

72

In expanding the macro invocation on line 190, the argument F1 is substituted for
the parameter and INDEV wherever it occurs in the body of the macro.

Similarly BUFFER is substituted for BUFADR and LENGTH is substituted for
RECLTH.

Lines 190a through 190m show the complete expansion of the macro invocation
on line 190.

The label on the macro invocation statement CLOOP has been retained as a label
on the first statement generated in the macro expansion.

This allows the programmer to use a macro instruction in exactly the same way as
an assembler language mnemonic.

After macro processing the expanded file can be used as input to assembler.

The macro invocation statement will be treated as comments and the statements
generated from the macro expansions will be assembled exactly as though they
had been written directly by the programmer.

73

4.1.1 Macro Processor Algorithm and Data Structures

e |t is easy to design a two-pass macro processor in which all macro definitions are
processed during the first pass ,and all macro invocation statements are expanded

during second pass

e Such a two pass macro processor would not allow the body of one macro
instruction to contain definitions of other macros.

Example 1:

—

MACROS MACRO

2 RDBUFF MACRO

3 MEND

4 WRBUFF MACRO

5 MEND

6 MEND
Example 2:

1 MACROX MACRO

2 RDBUFF MACRO

3 MEND

4 WRBUFF MACRO

5 MEND

6 MEND

{Defines SIC standard version macros}
&INDEV, &BUFADR, &RECLTH

{SIC standard version}

{End of RDBUFF}
&OUTDEV, &BUFADR, &RECLTH

{SIC standard version}

{End of WRBUFF}

{End of MACROS}

{Defines SIC/XE macros}
&INDEV, &§BUFADR, &RECLTH

{SIC/XE version}

{End of RDBUFF}
&OUTDEV, &BUFADR , &RECLTH

{SIC/XE version}

{End of WRBUFF}

{End of MACROX}

74

Defining MACROS or MACROX does not define RDBUFF and the other macro
instructions. These definitions are processed only when an invocation of
MACROS or MACROX is expanded.

A one pass macroprocessor that can alternate between macro definition and macro
expansion is able to handle macros like these.

There are 3 main data structures involved in our macro processor.

Definition table (DEFTAB)

1. The macro definition themselves are stored in definition table (DEFTAB), which
contains the macro prototype and statements that make up the macro body.

2. Comment lines from macro definition are not entered into DEFTAB because they
will not be a part of macro expansion.
Name table (NAMTAB)

1. References to macro instruction parameters are converted to a positional entered
into NAMTAB, which serves the index to DEFTAB.

2. For each macro instruction defined, NAMTAB contains pointers to beginning and
end of definition in DEFTAB.
Argument table (ARGTAB)

1. The third Data Structure in an argument table (ARGTAB), which is used during
expansion of macro invocations.

2. When macro invocation statements are recognized, the arguments are stored in
ARGTAB according to their position in argument list.

3. As the macro is expanded, arguments from ARGTAB are substituted for the
corresponding parameters in the macro body.

NAMTAB DEFTAB
ol i e (R
JEQ b)
JEQ *+11
ARGTAB (a)

F1

BUFFER

LENGTH

(b)

75

e The position notation is used for the parameters. The parameter &INDEV has
been converted to 71, &BUFADR has been converted to ?2.

e When the ?n notation is recognized in a line from DEFTAB, a simple indexing
operation supplies the property argument from ARGTAB.

Algorithm:

e The procedure DEFINE, which is called when the beginning of a macro definition
is recognized, makes the appropriate entries in DEFTAB and NAMTAB.

e EXPAND is called to set up the argument values in ARGTAB and expand a
macro invocation statement.

e The procedure GETLINE gets the next line to be processed

e This line may come from DEFTAB or from the input file, depending upon
whether the Boolean variable EXPANDING is set to TRUE or FALSE.

begin {macro processor}
EXPANDING := FALSE
while OPCODE # 'END’ do
begin
GETLINE
PROCESSLINE
end {while}
end {macro processor}

procedure PROCESSLINE
begin
search NAMTAB for OPCODE
if found then
EXPAND
else if OPCODE = 'MACRO’ then
DEFINE
else write source line to expanded file
end {PROCESSLINE}

76

procedure EXPAND
begin
EXPANDING := TRUE
get first line of macro definition {prototype} from DEFTAB
set up arguments from macro invocation in ARGTAB
write macro invocation to expanded file as a comment
while not end of macro definition do
begin
GETLINE
PROCESSLINE
end {while}
EXPANDING := FALSE
end (EXPAND}

procedure GETLINE
begin
if EXPANDING then
begin
get next line of macro definition from DEFTAB
substitute arguments from ARGTAB for positional notation
end {if}
else
read next line from input file

end {GETLINE}

Figure 4.5 (contd)

MACHINE INDEPENDENT MACRO PROCESSOR FEATURES

Machine independent macro processor features are extended features that are not directly
related to architecture of computer for which the macro processor is written.

Concatenation of Macro Parameter

e Most Macro Processor allows parameters to be concatenated with other character
strings.
e A program contains a set of series of variables:
= XAl XA2, XA3,...

77

= XB1, XB2, XB3,...
e If similar processing is to be performed on each series of variables, the
programmer might want to incorporate this processing into a macro instructuion.
e The parameter to such a macro instruction could specify the series of variables to
be operated on (A, B, C ...).

e The macro processor constructs the symbols by concatenating X, (A, B, ...), and
(1,2,3,...) in the macro expansion.

e Suppose such parameter is named &ID, the macro body may contain a statement:
LDA X&ID1, in which &ID is concatenated after the string “X” and before the
string “1”.

0 LDA XAl (&ID=A)
0 LDA XB1 (&ID=B)
e Ambiguity problem:
E.g., X&ID1 may mean
“X” + &ID + “1”
“X” + &ID1
This problem occurs because the end of the parameter is not marked.

e Solution to this ambiguity problem:

Use a special concatenation operator “0” to specify the end of the parameter
LDA X&ID o1
So that the end of parameter &ID is clearly identified.

Macro definition

1 SIM MACRO &ID

2 LDA X&ID-1
3 ADD X&ID—?2
4 ADD X&ID—3
5 STA X&ID—S
6 MEND

Macro invocation statements

78

SUM

J

LDA
ADD
ADD
STA

e The macroprocessor deletes all occurrences of the concatenation operator
immediately after performing parameter substitution, so the character = will not
appear in the macro expansion.

XAl
XA2
XA3
XAS

Generation of Unique Labels

e Labels in the macro body may cause “duplicate labels” problem if the macro is

invocated and expanded multiple times.

e Use of relative addressing at the source statement level is very inconvenient,
error-prone, and difficult to read.

e Itis highly desirable to
1. Let the programmer use label in the macro body

e Labels used within the macro body begin with $.
2. Let the macro processor generate unique labels for each macro invocation and

expansion.

“Consider the definition of WRBUFF

5

135

140

155

255

COPY

™
JEQ
LT

END

During macro expansion, the $ will be replaced with $xx, where xx
is a two-character alphanumeric counter of the number of macro
instructions expanded.
XX=AA, AB, AC

START

0

=X ‘&«OUTDEV’

*-3

*.14

FIRST

79

If a label was placed on the TD instruction on line 135, this label would be
defined twice, once for each invocation of WRBUFF.

This duplicate definition would prevent correct assembly of the resulting
expanded program.

The jump instructions on line 140 and 155 are written using the redlative
operands *-3 and *-14, because it is not possible to place a label on line 135 of the
macro definition.

This relative addressing may be acceptable for short jumps such as “ JEQ *-3”

For longer jumps spanning several instructions, such notation is very
inconvenient, error-prone and difficult to read.

Many macroprocessors avoid these problems by allowing the creation of special
types of labels within macro instructions.

RDBUFF definition

25
30
35
40
45
50
55
60
65
70
i
80
85
90
95

RDBUFF MACRO &INDEV, &BUFADR, &RECLTH

CLEAR X CLEAR LOOP COUNTER
CLEAR A
CLEAR S
+IDT #4096 SET MAXIMUM RECORD LENGTH
SLOOP D =X' &INDEV' TEST INPUT DEVICE
JEQ $LOOP LOOP UNTIL READY
RD =X"&INDEV' READ CHARACTER INTO REG A
COMPR A,S TEST FOR END OF RECORD
JEQ SEXIT EXIT LOOP IF EOR
STCH &BUFADR,X STORE CHARACTER IN BUFFER
diai T | LOOP UNLESS MAXIMUM LENGTH
JLT $LOOP HAS BEEN REACHED
SEXIT . 8T &RECLTH SAVE RECORD LENGTH
MEND

Labels within the macro body begin with the special character $.

Macro expansion

80

RDBUFF F1,BUFFER, LENGTH

30 CLEAR X CLEAR LOOP COUNTER

35 CLEAR A

40 CLEAR S

45 +LDT #4096 SET MAXIMUM RECORD LENGTH
50 SAALOOP TD =X!F1! TEST INPUT DEVICE

55 JEQ $SAAT,00P LOOP UNTIL READY

60 RD =RIRTE READ CHARACTER INTO REG A
65 COMPR A,S TEST FOR END OF RECORD

70 JEQ SAAEXIT EXIT LOOP IF EOR

75 STCH BUFFER, X STORE CHARACTER IN BUFFER
80 TIXR jt LOOP UNLESS MAXIMUM LENGTH
85 JLT _SAALQQP HAS BEEN REACHED

90 SSAREXT TS | STX LENGTH SAVE RECORD LENGTH

e Unique labels are generated within macro expansion.

e Each symbol beginning with $ has been modified by replacing $ with $AA.

e The character $ will be replaced by $xx, where xx is a two-character
alphanumeric counter of the number of macro instructions expanded.

e For the first macro expansion in a program, xx will have the value AA. For
succeeding macro expansions, xx will be set to AB, AC etc.

Conditional Macro Expansion

e Arguments in macro invocation can be used to:
o Substitute the parameters in the macro body without changing the
sequence of statements expanded.
o Modify the sequence of statements for conditional macro expansion (or
conditional assembly when related to assembler).
= This capability adds greatly to the power and flexibility of a macro
language.

Consider the example

81

25
26
27
28
30
35
38
40
42
43
44
45
46
47
48
50
55
60
63
65
70
73
75
80
85
90
95

RDBUFF

&EﬁﬁCK

Macro
Time
variable

SLOOP

SEXIT

MACRO
IF
SET
ENDIF
CLEAR
CLEAR
IF
LDCH
RMO
ENDIF
IF
+LDT
ELSE
+LDT
ENDIF
TD
JEQ
RD
IF
COMPR
JEQ
ENDIF
STCH
TIXR
JLT
STX
MEND

&INDEV, &BUFADR, &RECLTH, &EOR, &MAXLTH

(&EOR NE ')

|

X CLEAR LOOP COUNTER

A

(&EORCK EQ 1)
=X'&EOR’ SET EOR CHARACTER

A,S -

P Boolean Expression

(&MAXLTH EQ ')
#4096 SET MAX LENGTH = 4096
#&MAXLTH SET MAXIMUM RECORD LENGTH
=X ' &INDEV' TEST INPUT DEVICE

$SLOOP LOOP UNTIL READY
=X’ &INDEV' READ CHARACTER INTO REG A
(&EORCK EQ 1)

A,S TEST FOR END OF RECORD
SEXIT EXIT LOOP IF EOR

&BUFADR, X STORE CHARACTER IN BUFFER
T LOOP UNLESS MAXIMUM LENGTH
SLOOP HAS BEEN REACHED
&RECLTH SAVE RECORD LENGTH

faN

Two additional parameters used in the example of conditional macro expansion
o &EOR: specifies a hexadecimal character code that marks the end of a
record

o &MAXLTH: specifies the maximum length of a record

Macro-time variable (SET symbol)

o can be used to

= store working values during the macro expansion
= store the evaluation result of Boolean expression
= control the macro-time conditional structures

o begins with “&” and that is not a macro instruction parameter
o be initialized to a value of 0
o be set by a macro processor directive, SET

Macro-time conditional structure
o IF-ELSE-ENDIF
o WHILE-ENDW

82

Implementation of Conditional Macro Expansion (IF-ELSE-ENDIF
Structure)

e A symbol table is maintained by the macroprocessor.
o This table contains the values of all macro-time variables used.
o Entries in this table are made or modified when SET statements are
processed.
o This table is used to look up the current value of a macro-time variable
whenever it is required.
e The testing of the condition and looping are done while the macro is being
expanded.
e When an IF statement is encountered during the expansion of a macro, the
specified Boolean expression is evaluated. If value is
o TRUE
= The macro processor continues to process lines from DEFTAB
until it encounters the next ELSE or ENDIF statement.
= If ELSE is encountered, then skips to ENDIF
o FALSE
= The macro processor skips ahead in DEFTAB until it finds the
next ELSE or ENDLF statement.

Implementation of Conditional Macro Expansion (WHILE-ENDW
Structure)

e When an WHILE statement is encountered during the expansion of a macro, the
specified Boolean expression is evaluated. If value is
o TRUE
= The macro processor continues to process lines from DEFTAB
until it encounters the next ENDW statement.
= When ENDW is encountered, the macro processor returns to the
preceding WHILE, re-evaluates the Boolean expression, and takes
action again.
o FALSE
= The macro processor skips ahead in DEFTAB until it finds the
next ENDW statement and then resumes normal macro expansion.

Keyword Macro Parameters

83

e Positional parameters

(@]

Parameters and arguments are associated according to their positions in
the macro prototype and invocation. The programmer must specify the
arguments in proper order.

If an argument is to be omitted, a null argument should be used to
maintain the proper order in macro invocation statement.

For example: Suppose a macro instruction GENER has 10 possible
parameters, but in a particular invocation of the macro only the 3 and 9™
parameters are to be specified.

The statement is GENER ,,DIRECT,,,,,,3.

It is not suitable if a macro has a large number of parameters, and only a
few of these are given values in a typical invocation.

o Keyword parameters

©)

O

©)

Each argument value is written with a keyword that names the
corresponding parameter.

Arguments may appear in any order.

Null arguments no longer need to be used.

If the 3" parameter is named &TYPE and 9" parameter is named
&CHANNEL, the macro invocation would be

GENER TYPE=DIRECT,CHANNEL=3.

It is easier to read and much less error-prone than the positional method.

Consider the example

e Here each parameter name is followed by equal sign, which identifies a keyword
parameter and a default value is specified for some of the parameters.

84

25 RDBUFF MACRO &INDEV=F1, &BUFADR=, &RECLTH=, &EOR=04 , &MAXLTH=4096
26 IF (&EOR NE ")

27 &EORCK SET 1l

28 ENDIF

30 CLEAR X CLEAR LOOP COUNTER

35 CLEAR A

38 IF (&EORCK EQ 1)

40 LDCH =X'&EOR' SET EOR CHARACTER

42 RMO ;S

43 ENDIF

47 +LDT #&MAXLTH SET MAXIMUM RECORD LENGTH
50 SLOOP TD =X'&INDEV' TEST INPUT DEVICE

55 JEQ $SLOOP LOOP UNTIL READY

60 RD =X'&INDEV' READ CHARACTER INTO REG A
63 IF (&EORCK EQ 1)

65 COMPR A,S TEST FOR END OF RECORD

70 JEQ SEXIT EXIT LOOP IF EOR

73 ENDIF

75 STCH &BUFADR, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT $LOOP HAS BEEN REACHED

90 SEXIT STX &RECLTH SAVE RECORD LENGTH

95 MEND

RDBUFF BUFADR=BUFFER, RECLTH=LENGTH

30 CLEAR X CLEAR LOOP COUNTER

35 CLEAR A

40 ILDCH =X'04’ SET EOR CHARACTER

42 RMO AS

47 +LDT #4096 SET MAXIMUM RECORD LENGTH
50 SAALOOP D =X'F1’ TEST INPUT DEVICE

55 JEQ SAALOOP LOOP UNTIL READY

60 RD =X'F1’ READ CHARACTER INTO REG A
65 COMPR A,S TEST FOR END OF RECORD

70 JEQ SAAEXIT EXIT LOOP IF EOR

75 STCH BUFFER, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT SAALOOP HAS BEEN REACHED

90 SAAEXIT STX LENGTH SAVE RECORD LENGTH

Here the value if &INDEYV is specified as F3 and the value of &EOR is specified as null.

85

MACROPROCESSOR DESIGN OPTIONS

Recursive Macro Expansion

10 RDBUFF MACRO &BUFADR, &RECLTH, &INDEV

15 .

20 - MACRO TO READ RECORD INTO BUFFER

25 :

30 CLEAR X CLEAR LOOP COUNTER

35 CLEAR A

40 CLEAR S

45 +LDT #4096 SET MAXIMUM RECORD LENGTH
50 SLOOP RDCHAR &TNDEV READ CHARACTER INTO REG A
65 COMPR A,S TEST FOR END OF RECORD

70 JEQ SEXIT EXIT LOOP IF EOR

75 STCH &BUFADR, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT $LOOP HAS BEEN REACHED

90 SEXIT STX &RECLTH SAVE RECORD LENGTH

95 MEND

5 ROCHAR MACRO &IN

10 .
5. MACRO TO READ CHARACTER INTO REGISTER A
0.
25 D =K TEST INPUT DEVICE
30 B3 LOOP UNTIL READY
3 R =XaIV READ CHARACTER
40 MEND

 RDCHAR:

o read one character from a specified device into register A
o should be defined beforehand (i.e., before RDBUFF)

86

Implementation of Recursive Macro Expansion

e Previous macro processor design cannot handle such kind of recursive macro
invocation and expansion, e.g., RDBUFF BUFFER, LENGTH, F1
e Reasons:

1) The procedure EXPAND would be called recursively, thus the invocation
arguments in the ARGTAB will be overwritten.

2) The Boolean variable EXPANDING would be set to FALSE when the
“inner” macro expansion is finished, that is, the macro process would
forget that it had been in the middle of expanding an “outer” macro.

3) A similar problem would occur with PROCESSLINE since this procedure
too would be called recursively.

e Solutions:

1) Write the macro processor in a programming language that allows
recursive calls, thus local variables will be retained.

2) Use a stack to take care of pushing and popping local variables and return
addresses.

e Another problem: can a macro invoke itself recursively?

One-Pass Macro Processor

e A one-pass macro processor that alternate between macro definition and macro
expansion in a recursive way is able to handle recursive macro definition.

e Because of the one-pass structure, the definition of a macro must appear in the
source program before any statements that invoke that macro.

Handling Recursive Macro Definition

e In DEFINE procedure

o When a macro definition is being entered into DEFTAB, the normal
approach is to continue until an MEND directive is reached.

o This would not work for recursive macro definition because the first
MEND encountered in the inner macro will terminate the whole macro
definition process.

o To solve this problem, a counter LEVEL is used to keep track of the level
of macro definitions.

= Increase LEVEL by 1 each time a MACRO directive is read.

= Decrease LEVEL by 1 each time a MEND directive is read.

= A MEND can terminate the whole macro definition process only
when LEVEL reaches 0.

87

= This process is very much like matching left and right parentheses
when scanning an arithmetic expression.

Two-Pass Macro Processor

e Two-pass macro processor
o Pass1:
= Process macro definition
o Pass2:
= Expand all macro invocation statements
e Problem
o This kind of macro processor cannot allow recursive macro definition, that
is, the body of a macro contains definitions of other macros (because all
macros would have to be defined during the first pass before any macro
invocations were expanded).

Example of Recursive Macro Definition

e MACROS (for SIC)
o Contains the definitions of RDBUFF and WRBUFF written in SIC

instructions.

e MACROX (for SIC/XE)
o Contains the definitions of RDBUFF and WRBUFF written in SIC/XE

instructions.
e A program that is to be run on SIC system could invoke MACROS whereas a
program to be run on SIC/XE can invoke MACROX.
e Defining MACROS or MACROX does not define RDBUFF and WRBUFF.
These definitions are processed only when an invocation of MACROS or
MACROX is expanded.

88

1 MACROS MACRO {Defines SIC standard version macros}
2 RDBUFF MACRO &INDEV, &BUFADR, &RECLTH
{SIC standard version}
3 MEND {End of RDBUFF}
4 WRBUFF MACRO &OUTDEV, &BUFADR, &RECLTH
{SIC standard version}
5 MEND {End of WRBUFF}
6 MEND {End of MACROS}
1 MACROX MACRO {Defines SIC/XE macros}
2 RDBUFF MACRO &INDEV, &BUFADR, &RECLTH
{SIC/XE version}
3 MEND {End of RDBUFF}
4 WRBUFF MACRO &OUTDEV, &BUFADR, &RECLTH
{SIC/XE version}
5 MEND {End of WRBUFF}
6 MEND {End of MACROX}

General-Purpose Macro Processors

Goal

e Macro processors that do not dependent on any particular programming language,
but can be used with a variety of different languages.

Advantages
e Programmers do not need to learn many macro languages.

89

e Although its development costs are somewhat greater than those for a language-
specific macro processor, this expense does not need to be repeated for each
language, thus save substantial overall cost.

Disadvantages
e Large number of details must be dealt with in a real programming language
e Situations in which normal macro parameter substitution should not occur, e.g.,
comments.
e Facilities for grouping together terms, expressions, or statements
e Tokens, e.g., identifiers, constants, operators, keywords
e Syntax

Macro Processing within Language Translators
Macro processors can be

1) Preprocessors
o Process macro definitions.
o Expand macro invocations.
o Produce an expanded version of the source program, which is then used as
input to an assembler or compiler.
2) Line-by-line macro processor
o Used as a sort of input routine for the assembler or compiler.
o Read source program.
o Process macro definitions and expand macro invocations.
o Pass output lines to the assembler or compiler.
3) Integrated macro processor

Line-by-Line Macro Processor

Benefits
e |t avoids making an extra pass over the source program.
e Data structures required by the macro processor and the language translator can
be combined (e.g., OPTAB and NAMTAB)
e Utility subroutines can be used by both macro processor and the language
translator.
o Scanning input lines
o Searching tables
o Data format conversion
e |t is easier to give diagnostic messages related to the source statements.

Integrated Macro Processor

90

e An integrated macro processor can potentially make use of any information about
the source program that is extracted by the language translator.
e Asanexample in FORTRAN

DO 1001 =1,20
— a DO statement:
+ DO: keyword
+ 100: statement number
* | variable name
DO1001=1
— Anassignment statement
+ DO100I: variable (blanks are not significant in
FORTRAN)

e An integrated macro processor can support macro instructions that depend upon
the context in which they occur.
Drawbacks of Line-by-line or Integrated Macro Processor

e They must be specially designed and written to work with a particular
implementation of an assembler or compiler.

e The cost of macro processor development is added to the costs of the language
translator, which results in a more expensive software.

e The assembler or compiler will be considerably larger and more complex.

UNIT V
TEXT-EDITORS
OVERVIEW OF THE EDITING PROCESS.

An interactive editor is a computer program that allows a user to create and revise
a target document. The term document includes objects such as computer programs,

91

texts, equations, tables, diagrams, line art and photographs-anything that one might find
on a printed page. Text editor is one in which the primary elements being edited are
character strings of the target text. The document editing process is an interactive user-
computer dialogue designed to accomplish four tasks:

1) Select the part of the target document to be viewed and manipulated
2) Determine how to format this view on-line and how to display it.

3) Specify and execute operations that modify the target document.

4) Update the view appropriately.

Traveling — Selection of the part of the document to be viewed and edited. It involves
first traveling through the document to locate the area of interest such as “next
screenful”, ”bottom”,and “find pattern”. Traveling specifies where the area of interest is;

Filtering - The selection of what is to be viewed and manipulated is controlled by
filtering. Filtering extracts the relevant subset of the target document at the point of
interest such as next screenful of text or next statement.

Formatting: Formatting determines how the result of filtering will be seen as a visible
representation (the view) on a display screen or other device.

Editing: In the actual editing phase, the target document is created or altered with a set of
operations such as insert, delete, replace, move or copy.

Manuscript oriented editors operate on elements such as single characters, words, lines,
sentences and paragraphs; Program-oriented editors operates on elements such as
identifiers, keywords and statements

THE USER-INTERFACE OF AN EDITOR.

The user of an interactive editor is presented with a conceptual model of the
editing system. The model is an abstract framework on which the editor and the world on
which the operations are based. The line editors simulated the world of the keypunch
they allowed operations on numbered sequence of 80-character card image lines.

The Screen-editors define a world in which a document is represented as a
quarter-plane of text lines, unbounded both down and to the right. The user sees, through
a cutout, only a rectangular subset of this plane on a multi line display terminal. The
cutout can be moved left or right, and up or down, to display other portions of the
document. The user interface is also concerned with the input devices, the output devices,
and the interaction language of the system.

INPUT DEVICES: The input devices are used to enter elements of text being edited, to

enter commands, and to designate editable elements. Input devices are categorized as: 1)
Text devices 2) Button devices 3) Locator devices

92

1) Text or string devices are typically typewriter like keyboards on which user presses
and release keys, sending unique code for each key. Virtually all computer key boards are
of the QWERTY type.

2) Button or Choice devices generate an interrupt or set a system flag, usually causing
an invocation of an associated application program. Also special function keys are also
available on the key board. Alternatively, buttons can be simulated in software by
displaying text strings or symbols on the screen. The user chooses a string or symbol
instead of pressing a button.

3) Locator devices: They are two-dimensional analog-to-digital converters that position
a cursor symbol on the screen by observing the user®s movement of the device. The most
common such devices are the mouse and the tablet.

The Data Tablet is a flat, rectangular, electromagnetically sensitive panel. Either the
ballpoint pen like stylus or a puck, a small device similar to a mouse is moved over the
surface. The tablet returns to a system program the co-ordinates of the position on the
data tablet at which the stylus or puck is currently located. The program can then map
these data-tablet coordinates to screen coordinates and move the cursor to the
corresponding screen position. Text devices with arrow (Cursor) keys can be used to
simulate locator devices. Each of these keys shows an arrow that point up, down, left or
right. Pressing an arrow key typically generates an appropriate character sequence; the
program interprets this sequence and moves the cursor in the direction of the arrow on the
key pressed.

VOICE-INPUT DEVICES: which translate spoken words to their textual equivalents,
may prove to be the text input devices of the future. Voice recognizers are currently
available for command input on some systems.

OUTPUT DEVICES The output devices let the user view the elements being edited and
the result of the editing operations.

= The first output devices were teletypewriters and other character-printing terminals
that generated output on paper.

= Next “glass teletypes” based on Cathode Ray Tube (CRT) technology which uses
CRT screen essentially to simulate the hard-copy teletypewriter.

= Today"s advanced CRT terminals use hardware assistance for such features as
moving the cursor, inserting and deleting characters and lines, and scrolling lines and
pages.

= The modern professional workstations are based on personal computers with high
resolution displays; support multiple proportionally spaced character fonts to produce
realistic facsimiles of hard copy documents.

INTERACTION LANGUAGE:

93

The interaction language of the text editor is generally one of several common
types.

The typing oriented or text command-oriented method It is the oldest of the major
editing interfaces. The user communicates with the editor by typing text strings both for
command names and for operands. These strings are sent to the editor and are usually
echoed to the output device. Typed specification often requires the user to remember the
exact form of all commands, or at least their abbreviations. If the command language is
complex, the user must continually refer to a manual or an on-line Help function. The
typing required can be time consuming for in-experienced users.

Function key interfaces: Each command is associated with marked key on the key
board. This eliminates much typing. E.g.: Insert key, Shift key, Control key

Disadvantages:

Have too many unique keys
Multiple key stroke commands

Menu oriented interface A menu is a multiple choice set of text strings or icons which
are graphical symbols that represent objects or operations. The user can perform actions
by selecting items for the menus. The editor prompts the user with a menu. One problem
with menu oriented system can arise when there are many possible actions and several
choices are required to complete an action. The display area of the menu is rather limited

EDITOR STRUCTURE
l |
Editing L) Editing
component buffer Editing
1
f S, | filter —
!
,'f Travelng ~———————~ LI Main
A component ————————— » memory
%
input | Command >l
language |_ ' Viewing
processor| ™ Viewing Viewing ¢— filter [
component buffer
\
\ .
aging
\ ol 1
Output :
devices Display File
component system

- Control
Data

94

Most Text editors have a structure similar to that shown above.

The command Language Processor It accepts input from the user®s input devices, and analyzes
the tokens and syntactic structure of the commands. It functions much like the lexical and
syntactic phases of a compiler. The command language processor may invoke the semantic
routines directly. In a text editor, these semantic routines perform functions such as editing and
viewing. The semantic routines involve traveling, editing, viewing and display functions. Editing
operations are always specified by the user and display operations are specified implicitly by the
other three categories of operations. Traveling and viewing operations may be invoked either
explicitly by the user or implicitly by the editing operations

Editing Component

In editing a document, the start of the area to be edited is determined by the current
editing pointer maintained by the editing component, which is the collection of modules dealing
with editing tasks. The current editing pointer can be set or reset explicitly by the user using
travelling commands, such as next paragraph and next screen, or implicitly as a side effect of the
previous editing operation such as delete paragraph.

Traveling Component

The traveling component of the editor actually performs the setting of the current editing
and viewing pointers, and thus determines the point at which the viewing and /or editing filtering
begins.

Viewing Component

The start of the area to be viewed is determined by the current viewing pointer. This
pointer is maintained by the viewing component of the editor, which is a collection of modules
responsible for determining the next view. The current viewing pointer can be set or reset
explicitly by the user or implicitly by system as a result of previous editing operation. The
viewing component formulates an ideal view, often expressed in a device independent
intermediate representation. This view may be a very simple one consisting of a window"s worth
of text arranged so that lines are not broken in the middle of the words.

Display Component

It takes the idealized view from the viewing component and maps it to a physical output
device in the most efficient manner. The display component produces a display by mapping the
buffer to a rectangular subset of the screen, usually a window

Editing Filter

Filtering consists of the selection of contiguous characters beginning at the current point.
The editing filter filters the document to generate a new editing buffer based on the current
editing pointer as well as on the editing filter parameters

Editing Buffer
It contains the subset of the document filtered by the editing filter based on the editing
pointer and editing filter parameters

Viewing Filter

95

When the display needs to be updated, the viewing component invokes the viewing filter.
This component filters the document to generate a new viewing buffer based on the current
viewing pointer as well as on the viewing filter parameters.

Viewing Buffer

It contains the subset of the document filtered by the viewing filter based on the viewing
pointer and viewing filter parameters. E.g. The user of a certain editor might travel to line 75,and
after viewing it, decide to change all occurrences of “ugly duckling” to “swan” in lines 1 through
50 of the file by using a change command such as

[1,50] c/ugly duckling/swan/

As a part of the editing command there is implicit travel to the first line of the file. Lines
1 through 50 are then filtered from the document to become the editing buffer. Successive
substitutions take place in this editing buffer without corresponding updates of the view

In Line editors, the viewing buffer may contain the current line; in screen editors, this
buffer may contain rectangular cut out of the quarter-plane of text. This viewing buffer is then
passed to the display component of the editor, which produces a display by mapping the buffer to
a rectangular subset of the screen, usually called a window.

The editing and viewing buffers, while independent, can be related in many ways. In a
simplest case, they are identical: the user edits the material directly on the screen. On the other
hand, the editing and viewing buffers may be completely disjoint.

Current editing pointer

Current viewing pointer

Simple relationship between editing and viewing buffers

Windows typically cover the entire screen or rectangular portion of it. Mapping viewing
buffers to windows that cover only part of the screen is especially useful for editors on
modern graphics based workstations. Such systems can support multiple windows,
simultaneously showing different portions of the same file or portions of different file.

96

This approach allows the user to perform inter-file editing operations much more
effectively than with a system only a single window.

The mapping of the viewing buffer to a window is accomplished by two components of
the system.

(i) First, the viewing component formulates an ideal view often expressed in a
device independent intermediate representation. This view may be a very
simple one consisting of a windows worth of text arranged so that lines are not
broken in the middle of words. At the other extreme, the idealized view may be a
facsimile of a page of fully formatted and typeset text with equations, tables and
figures.

(if) Second the display component takes these idealized views from the viewing
component and maps it to a physical output device the most efficient manner
possible.

The components of the editor deal with a user document on two levels:

(i) In main memory and

(ii) In the disk file system.

Loading an entire document into main memory may be infeasible. However if
only part of a document is loaded and if many user specified operations require a disk
read by the editor to locate the affected portions, editing might be unacceptably slow. In
some systems this problem is solved by the mapping the entire file into virtual memory
and letting the operating system perform efficient demand paging.

An alternative is to provide is the editor paging routines which read one or more
logical portions of a document into memory as needed. Such portions are often termed
pages, although there is usually no relationship between these pages and the hard copy
document pages or virtual memory pages. These pages remain resident in main memory
until a user operation requires that another portion of the document be loaded.

Editors function in three basic types of computing environment:
(i) Time-sharing environment
(ii) Stand-alone environment and
(iii) Distributed environment.

Each type of environment imposes some constraint on the design of an editor. The Time
—Sharing Environment The time sharing editor must function swiftly within the context
of the load on the computer®s processor, central memory and 1/0 devices.

The Stand alone Environment The editor on a stand-alone system must have access to the
functions that the time sharing editors obtain from its host operating system. This may be
provided in pare by a small local operating system or they may be built into the editor itself if the
stand alone system is dedicated to editing. Distributed Environment The editor operating in a
distributed resource sharing local network must, like a standalone editor, run independently on
each user“s machine and must, like a time sharing editor, content for shared resources such as
files.

97

INTERACTIVE DEBUGGING SYSTEMS
An interactive debugging system provides programmers with facilities that aid in testing
and debugging of programs interactively.

DEBUGGING FUNCTIONS AND CAPABILITIES
Execution sequencing: It is the observation and control of the flow of program execution.
For example, the program may be halted after a fixed number of instructions are executed.

Breakpoints — The programmer may define break points which cause execution to be
suspended, when a specified point in the program is reached. After execution is suspended, the
debugging command is used to analyze the progress of the program and to diagnose errors
detected. Execution of the program can then be removed.

Conditional Expressions — Programmers can define some conditional expressions,
evaluated during the debugging session, program execution is suspended, when conditions are
met, analysis is made, later execution is resumed

Gaits- Given a good graphical representation of program progress may even be useful in
running the program in various speeds called gaits. A Debugging system should also provide
functions such as tracing and traceback. Tracing can be used to track the flow of execution logic
and data modifications. The control flow can be traced at different levels of detail — procedure,
branch, individual instruction, and so on...

Traceback can show the path by which the current statement in the program was reached. It can
also show which statements have modified a given variable or parameter. The statements are
displayed rather than as hexadecimal displacements. Program-display Capabilities It is also
important for a debugging system to have good program display capabilities. It must be possible
to display the program being debugged, complete with statement numbers. Multilingual
Capability A debugging system should consider the language in which the program being
debugged is written. Most user environments and many applications systems involve the use of
different programming languages. A single debugging tool should be available to multilingual
situations.
Context Effects

The context being used has many different effects on the debugging interaction. For
example. The statements are different depending on the language

COBOL - MOVE6.5TO X
FORTRAN - X=6.5

Likewise conditional statements should use the notation of the source language
COBOL - IF ANOT EQUAL TO B
FORTRAN - IF (A .NE. B)

Similar differences exist with respect to the form of statement labels, keywords and so
on.

Display of source code

The language translator may provide the source code or source listing tagged in some
standard way so that the debugger has a uniform method of navigating about it.

98

Optimization:

It is also important that a debugging system be able to deal with optimized code. Many
optimizations involve the rearrangement of segments of code in the program

For eg. - invariant expressions can be removed from loop - separate
loops can be combined into a single loop - redundant expression may be
eliminated - elimination of unnecessary branch instructions The debugging of
optimized code requires a substantial amount of cooperation from the optimizing compiler.

Relationship with Other Parts of the System

An interactive debugger must be related to other parts of the system in many different
ways. Availability Interactive debugger must appear to be a part of the run-time environment and
an integral part of the system. When an error is discovered, immediate debugging must be
possible because it may be difficult or impossible to reproduce the program failure in some other
environment or at some other times. Consistency with security and integrity components User
need to be able to debug in a production environment. When an application fails during a
production run, work dependent on that application stops. Since the production environment is
often quite different from the test environment, many program failures cannot be repeated outside
the production environment. Debugger must also exist in a way that is consistent with the security
and integrity components of the system. Use of debugger must be subjected to the normal
authorization mechanism and must leave the usual audit trails. Someone (unauthorized user) must
not access any data or code. It must not be possible to use the debuggers to interface with any
aspect of system integrity. Coordination with existing and future systems The debugger must co-
ordinate its activities with those of existing and future language compilers and interpreters. It is
assumed that debugging facilities in existing language will continue to exist and be maintained.
The requirement of cross-language debugger assumes that such a facility would be installed as an
alternative to the individual language debuggers.

USER- INTERFACE CRITERIA

The interactive debugging system should be user friendly. The facilities of
debugging system should be organized into few basic categories of functions which
should closely reflect common user tasks.

Full — screen displays and windowing systems

= The user interaction should make use of full-screen display and windowing systems.
The advantage of such interface is that the information can be should displayed and
changed easily and quickly.

Menus:

= \With menus and full screen editors, the user has far less information to enter and
remember

= |t should be possible to go directly to the menus without having to retrace an entire
hierarchy.

= \When a full-screen terminal device is not available, user should have an equivalent
action in a linear debugging language by providing commands.

Command language:
= The command language should have a clear, logical, simple syntax. Parameters names
should be consistent across set of commands

99

= Parameters should automatically be checked for errors for type and range values.

= Defaults should be provided for parameters.
= Command language should minimize punctuations such as parenthesis, slashes, and

special characters.

On Line HELP facility
= Good interactive system should have an on-line HELP facility that should provide

help for all options of menu
= Help should be available from any state of the debugging system.

100

	CST305 – SYSTEM SOFTWARE
	REFERENCES
	UNIT I
	SYSTEM SOFTWARE
	TYPES OF SYSTEM SOFTWARE:
	OPERATING SYSTEM
	LANGUAGE TRANSLATORS
	Source Program Object Program
	High level language Machine language program
	Interpreter Memory

	THE SIMPLIFIED INSTRUCTIONAL COMPUTER (SIC):
	SIC Machine Structure:
	Memory:
	Registers:
	Data formats:
	Instruction formats:
	Addressing modes:
	Instruction set:
	Input and Output:

	SIC/XE ARCHITECTURE & SYSTEM SPECIFICATION
	Memory:
	Registers:
	Data Format:
	Instruction Format:
	Instructions:
	Input and Output (I/O):

	UNIT II ASSEMBLERS
	BASIC ASSEMBLER FUNCTIONS
	Figure 2.1: Assembler language program for basic SIC version

	A Simple SIC Assembler
	Object program format contains three types of records:
	Record format is as follows:
	Text record:
	End record:
	Functions of the two passes of assembler:
	Pass 2 (Assemble instructions and generate object programs)

	Assembler Algorithm and Data Structures
	Location Counter (LOCCTR) :
	Operation Code Table (OPTAB) :
	Symbol Table (SYMTAB) :

	MACHINE DEPENDENT ASSEMBLER FEATURES
	Instruction Formats and Addressing Modes
	Translation

	Program Relocation
	Example: Program Relocation
	Modification record

	MACHINE INDEPENDENT ASSEMBLER FEATURES
	Literals vs. Immediate Operands
	Literal Pools
	Duplicate literals
	Problem of duplicate-literal recognition
	Literal table - LITTAB
	Implementation of Literals Pass 1
	Pass 2

	Symbol-Defining Statements
	Example: using ORG
	Forward-Reference Problem

	Expressions
	Relocation Problem in Expressions
	Restriction of Relative Expressions
	Handling Relative Symbols in SYMTAB

	Program Blocks
	Assembler directive: USE
	Example
	Rearrange Codes into Program Blocks
	Program Blocks Loaded in Memory

	Control Sections and Program Linking
	External Definition and Reference
	External Reference Handling
	Records for Object Program
	Object Program

	ASSEMBLER DESIGN
	One-pass assembler
	Load-and-Go Assembler
	One-Pass Assemblers
	Sample program for a one-pass assembler
	Object Code in Memory and SYMTAB
	If One-Pass Assemblers need to produce object codes

	Two-pass assembler with overlay structure
	Multi-Pass Assemblers
	Implementation
	Example of Multi-pass assembler

	UNIT III LOADERS AND LINKERS
	INTRODUCTION
	BASIC LOADER FUNCTIONS
	Design of an Absolute Loader
	An example object program is shown in Fig (a).
	Algorithm for Absolute Loader

	A Simple Bootstrap Loader
	Working of a simple Bootstrap loader

	MACHINE-DEPENDENT LOADER FEATURES
	Relocation
	Fig(1) :Consider the program
	Object program

	.
	. (1)
	Fig (3): Object program with relocation by bit mask
	Program Linking
	Corresponding object programs PROGA:
	PROGC:
	 Consider REF4.
	Fig (4): The three programs as they might appear in memory after loading and linking.
	Fig (5): Relocation and linking operations performed on REF4 in PROGA

	Algorithm and Data Structures for a Linking Loader
	ESTAB.
	CSADDR (control section address).
	PASS 1
	Algorithm for Pass 1 of a Linking loader
	PASS 2
	Algorithm for Pass 2 of a Linking loader

	MACHINE-INDEPENDENT LOADER FEATURES
	Automatic Library Search
	Loader Options
	LOADER DESIGN OPTIONS
	Linkage Editors
	Dynamic Linking
	Bootstrap Loaders
	UNIT IV MACROPROCESSORS
	INTRODUCTION
	Macro Instructions
	Macro Processor
	Format of macro definition
	Example:

	BASIC MACROPROCESSOR FUNCTIONS
	Macro Definition and Expansion
	Macro Invocation
	Macro Expansion
	4.1.1 Macro Processor Algorithm and Data Structures
	Example 1:
	Definition table (DEFTAB)
	Name table (NAMTAB)
	Argument table (ARGTAB)
	Algorithm:

	MACHINE INDEPENDENT MACRO PROCESSOR FEATURES
	Concatenation of Macro Parameter
	Macro definition

	Generation of Unique Labels
	`Consider the definition of WRBUFF
	RDBUFF definition
	Macro expansion

	Conditional Macro Expansion
	Consider the example
	Implementation of Conditional Macro Expansion (IF-ELSE-ENDIF Structure)
	Implementation of Conditional Macro Expansion (WHILE-ENDW Structure)

	Keyword Macro Parameters
	 Positional parameters
	 Keyword parameters
	Consider the example

	MACROPROCESSOR DESIGN OPTIONS
	Implementation of Recursive Macro Expansion

	One-Pass Macro Processor
	Handling Recursive Macro Definition

	Two-Pass Macro Processor
	Example of Recursive Macro Definition

	General-Purpose Macro Processors
	Goal
	Advantages
	Disadvantages

	Macro Processing within Language Translators
	1) Preprocessors
	2) Line-by-line macro processor
	3) Integrated macro processor
	Integrated Macro Processor
	Drawbacks of Line-by-line or Integrated Macro Processor
	UNIT V TEXT- EDITORS
	THE USER-INTERFACE OF AN EDITOR.
	INTERACTION LANGUAGE:
	Disadvantages:
	(i) In main memory and
	(i) Time-sharing environment
	(iii) Distributed environment.
	USER- INTERFACE CRITERIA
	Full – screen displays and windowing systems
	Menus:
	Command language:
	On Line HELP facility

